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1 IntroductionThe use of graphs to represent statistical models dates back to Wright (1921) and has beenthe focus of considerable activity in recent years. In particular, attention has been directed atgraphical \conditional independence" models and at the application of such graphical modelsto probabilistic expert systems. These developments are conveniently summarised in therecent books by Whittaker (1990), Pearl (1988), and Neapolitan (1990), and in Spiegelhalteret al. (1993). Rather less well known are the breakthroughs that have also taken placein the development of a Bayesian framework for such models (Dawid and Lauritzen, 1993,Spiegelhalter and Lauritzen, 1990). The motivational applications for this work have beenin expert systems, where the promise of a model that can update itself as data becomesavailable, has generated intense interest from the arti�cial intelligence community (Charniak,1991, Kornfeld, 1991). However, the application of this work to a broader range of discretedata problems has been largely overlooked.The purpose of this article is to show how the Bayesian graphical framework uni�es andgreatly simpli�es many standard discrete data problems such as Bayesian log linear modelingwith either complete or incomplete data, model selection and accounting for model uncer-tainty, closed population estimation, multinomial estimation with misclassi�cation, doublesampling and database error prediction. This list by no means exhausts the possible appli-cations.This is a methodological article. Our objective is to demonstrate the diverse rangeof potential applications, alert the reader to an exciting new methodology and hopefullystimulate further development.1.1 An Outline of the Basic FrameworkAt the risk of over-simpli�cation we sketch the basic framework for the Bayesian analysis ofgraphical models with a simple medical example involving dichotomous variables:In recent years, Extracorporeal Shockwave Lithotripsy (ESWL) has become thetreatment modality of choice for kidney stones (Kiely et al,1990). In the standardsetup, the lithotripter operator �rst locates the stone via a real time ultrasoundimage. In the style of a video game, the operator then uses a joystick to identifythe stone on the image and hundreds of high frequency shockwaves are focussed atthe targeted location. Each individual shockwave passes harmlessly into the bodyat a separate location, but at the point of focus (hopefully the stone) su�cientenergy is generated to disintegrate the stone. The quality of the ultrasound imagea�ects the chance of disintegration. Subsequent clearance of the stone from theurinary tract (the desired outcome) is usually preceded by disintegration.A possibly reasonable model for this situation is given in Figure 1. This directed graphrepresents the assumption that Clearance (C) and Ultrasound Image Quality (I) are condi-tionally independent given Disintegration (D). The joint distribution of the three variablesfactors accordingly: pr(I;D;C) = pr(I)pr(D j I)pr(C j D): (1)2



&%'$ &%'$ &%'$- -I D CFigure 1: Lithotripsy: A Simple Discrete Graphical ModelAt the time of treatment the primary quantity of interest is pr(C j I), the probability ofsuccessful outcome given the quality of the ultrasound image (good/bad).The approach to this problem pioneered by Spiegelhalter (1986) is based entirely onsubjective expert knowledge. To fully specify the joint distribution in (1), �ve probabilitiesmust be elicited: pr(C j D);pr(C j D);pr(D j I);pr(D j I) and pr(I) (2)where the vinculum denotes negation. The calculation of pr(C j I) could now proceed bywriting down the eight probabilities of the joint distribution and marginalising over D. Ingeneral however, this may not be possible because the storage requirements for the jointdistribution become prohibitively expensive as the number of variables increases. Spiegel-halter (1986) described a method for converting the directed representation in Figure 1 toan undirected representation corresponding to a speci�c log linear model. The calculation ofarbitrary conditional probabilities can then proceed via a series of local calculations therebysidestepping the need to store the full joint distribution. See Dawid (1992) and Lauritzen(1992) for recent discussions of similar algorithms.An obvious development of the above framework is to update knowledge about the modelparameters as data accumulate thereby providing an extension from probabilistic reasoningto statistical analysis. The use of point estimates for the probabilities in (2) precludesthe possibility of such updating so instead we elicit prior distributions for these quantities.In e�ect the probabilities become random variables and can be added to the graph as inFigure 2. Within this framework Spiegelhalter and Lauritzen (1990) show how independentbeta distributions placed on these probabilities can be updated locally to form the posterioras data becomes available. This provides an attractive strategy for Bayesian analysis ofdiscrete data. The graph provides a powerful medium with which to communicate modelassumptions and derive model properties. Informative prior distributions can realisticallybe elicited in terms of quantities that are well understood rather than, for example, thecryptic \u"-parameters of log linear models (Bishop et al., 1975). Furthermore, the requiredcomputations are straightforward.In later sections we extend this framework and apply it to a variety of problems. Somecommon themes will be apparent across these applications:First, the importance of recognising and incorporating model uncertainty has been ac-knowledged by many authors. Hodges (1987), Raftery (1988b), and Draper (1993) argue3
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�I D Cpr(I) pr(D j I) pr(C j D)
pr(D j I) pr(C j D)Figure 2: Lithotripsy: Bayesian Graphical Modelconvincingly that ignoring model uncertainty can lead to underestimation of the uncertaintyabout quantities of interest. In the context of the lithotripsy example, inference about therelationship between image quality and clearance could be greatly a�ected by the addition ofa link from I to C. Thus uncertainty about the conditional independence of C and I givenD should be accounted for in subsequent inference. A complete Bayesian solution to thisproblem involves averaging over all possible models when making inferences about quantitiesof interest, much as one would integrate out a nuisance parameter in a hierarchical model.Indeed Hodges (1987) comments that \what is clear is that when the time comes for bettingon what the future holds, one's uncertainty about that future should be fully represented,and model [averaging] is the only tool around." In many applications, however, because ofthe size of the model space and awkward integrals, this averaging will not be a practicalproposition, and approximations are required. Draper (1993) describes \model expansion":averaging over all plausible models in the neighborhood of a \good" model. Madigan andRaftery (1991) describe an approach for Bayesian graphical models that involves seeking outthe most plausible models and averaging over them. Raftery (1992) applies this to structuralequation models. Here, we propose a Markov chain Monte Carlo approach which provides aworkable approximation to the complete solution. The point is that with Bayesian graphicalmodels, accounting for model uncertainty is entirely possible. This will be demonstrated inlater applications.Second, in several of the applications we consider, the presence of missing data and/orlatent variables produces ostensibly insurmountable analytic obstacles. Such complexityfrequently rules out the consideration of larger models involving many covariates and othergeneralisations. We will show how Bayesian graphical models coupled with Markov chainMonte Carlo techniques provide a conceptually simple approach to such problems and greatly4



extend the range of possible applications.Finally, Bayesian graphical models provide an exciting opportunity to implement thecomplete Bayesian paradigm. The elicitability of informative prior distributions motivatesmany of the constructions we present in later sections.In summary, there are many advantages to analysing discrete data with Bayesian graph-ical models:� Most model assumptions are entirely transparent when a graphical representation ofthe model is used (Lange, 1992);� Bayesian graphical models and attendant modeling strategies provide a uni�ed andconceptually simple framework for a diverse range of applications;� Model uncertainty can be accounted for in a straightforward fashion;� Missing data and latent variables are catered for;� Informative subjective knowledge can realistically be elicited and incorporated.The primary disadvantage is increased computational complexity. However, with the adventof Markov chain Monte Carlo methods for Bayesian analysis and the widespread availabilityof immense computing power, this problem is somewhat mitigated.1.2 PlanIn the next section, we de�ne graphical models and describe more fully the Bayesian frame-work sketched above. The closed population estimation problem is presented in Section 3.In Section 4 we consider a simple application concerned with the estimation of multino-mial probabilities subject to misclassi�cation. Next we consider a range of double samplingproblems and in Section 6 we re-examine some recent work concerning the estimation oferrors in databases. Finally we discuss possible extensions of this work and other potentialapplications.2 An Outline of the Technical Framework2.1 Independence Graphs and FactorisationsGraphical models are a class of statistical models de�ned by collections of conditional inde-pendencies which can by represented by a graph (see Appendix I for a summary of the graphterminology we use). We will only consider graphs that are either directed and acyclic orundirected in what follows, although combinations of the two have also been studied|seefor example, Whittaker (1990). In either case, each node in the graph will correspond to arandom variable Xv; v 2 V taking values in a sample space Xv.In the directed case (see for example Figure 1), the parents pa(v) of a node v are thosenodes from which edges point into v. These parents are taken to be the only direct inuenceson v, and thus, v is independent of its non-descendents given its parents.5



This property implies a factorisation of the joint distribution of Xv; v 2 V , which wedenote by pr(V ), given by: pr(V ) = Yv2V pr(v j pa(v)): (3)The class of models which can be de�ned in this way were introduced by Kiiveri et al. (1984)and are a subclass of their recursive causal models. Determining conditional independenciesin large directed graphs can be di�cult. However, Lauritzen et al. (1990) show that for setsA;B and S � V , A and B are conditionally independent given S, whenever A and B areseparated by S in a \moralized" undirected graph containing A[B [S and their ancestors.A moralized graph is formed by placing edges between nodes which share a child and thendropping the edge directions.In the undirected case, we take each node to be conditionally independent of all othersgiven its neighbours. For a more detailed exposition of Markov properties with respect todirected and undirected graphs, we refer the reader to Lauritzen et al. (1990).In the case where the random variables (Xv); v 2 V are all discrete, the class of modelsde�ned by the undirected graphs are a subclass of the hierarchical log linear models wherethe cliques of the graph correspond to the maximal terms in the log linear model.In what follows we will make extensive use of \decomposable models" for which theunderlying undirected graph is chordal. These are the \closed-form" log linear models forwhich parameters can be estimated without recourse to iterative methods. The key propertyof such models is a simple factorisation of the joint density:pr(V ) = Qni=1 pr(Ci)Qni=2 pr(Si) (4)where C1; : : : ; Cn is a so-called \perfect" clique ordering and S2; : : : ; Sn are the correspondingclique separators. The simplicity of such decomposable models has been exploited in a num-ber of contexts|see for example Lauritzen and Spiegelhalter (1988), Dawid and Lauritzen(1993), Madigan and Mosurski (1990, 1991) and Madigan and Raftery (1991).2.2 Bayesian Framework for Directed Graphical ModelsHere we describe the Bayesian framework for directed graphical models. Consider a directedgraphical model for a set of discrete random variables Xv; v 2 V . The assumptions of themodel imply that the joint distribution of Xv; v 2 V is given by Equation (3).Spiegelhalter and Lauritzen (1990) introduced a parametrisation for pr(vjpa(v)) wherebythe relationship between a node v and its parents pa(v) is fully speci�ed by a possiblyvector-valued parameter �v 2 �v. This leads to a conditional distribution for V :pr(V j�) = Yv2V pr(vjpa(v); �v):; (5)where � has components �v corresponding to each node v 2 V . For the lithotripsy exampleof Section 1, we have �C = fpr(C j D);pr(C j D)g; �D = fpr(D j I);pr(D j I)g and�I = fpr(I)g. 6



Spiegelhalter and Lauritzen (1990) make two key assumptions which greatly simplify sub-sequent analysis. The �rst assumption is that of global independence whereby the parameters�v are assumed mutually independent a priori. This assumption alone allows us to calculatethe likelihood for a single case:pr(v) = Z pr(v; �)d� = Z Yv pr(vjpa(v); �v)pr(�v)d�v =Yv pr(vjpa(v))where pr(vjpa(v)) = Z pr(vjpa(v); �v)pr(�v)d�v:The second assumption is that of local independence whereby components of �v corre-sponding to the elements of the state space of pa(v) are assumed to be mutually independenta priori. Both of these assumptions were embodied in the lithotripsy example of Figure 2,where, for instance, we have that pr(I) is independent of pr(D j I) (global independence)and pr(D j I) is independent of pr(D j I) (local independence).Now consider a conditional probability distribution pr(vjpa(v)+; �+v ) = �+v for a speci�cstate pa(v)+ of pa(v). We assume that �+v has a Dirichlet distribution D[�+1 ; :::; �+k ] where kis the number of states of v (alternative parametrisations are also considered by Spiegelhalterand Lauritzen, 1990). This prior is conjugate with multinomial sampling, and it follows that:pr(vjpa(v)+) = �+v =Xi �+ithereby providing a simple method for calculating the likelihood.If we observe one data case where v is in state j and the parent state is pa(v)+, theposterior distribution of �+v is given by:�+v jv � D[�+1 ; :::; �+j + 1; :::; �+k ]:In general, the posterior distributions are found by incrementing each parameter �+j by thenumber of cases with that con�guration of v and pa(v). If the data are complete, updatingeach component of � in this fashion preserves local and global independence.2.3 Bayesian Framework for Undirected Decomposable Graphi-cal ModelsFollowing Dawid and Lauritzen (1993), we consider a decomposable model M for a set ofrandom variables Xv; v 2 V . Let I = Qv2V Xv denote the set of possible con�gurations ofX. Denote by �(i) the probability of a state i 2 I. Then �(i) is determined by the cliquemarginal probability tables �C; C 2 C where C denotes the set of cliques of M :�(i) = QC2C �C(iC)QS2S �S(iS) ; i 2 I:S denotes the system of clique separators in an arbitrary perfect ordering of C.7



For each clique C 2 C, let D(�C) denote the Dirichlet distribution for �C with density�(�Cj�C) / YiC2IC �C(iC)�C(iC)�1;where �C(iC) > 0 for all iC 2 IC.Now let us suppose that the collection of speci�cations D(�C); C 2 C are constructed insuch a way that for any two cliques C and D in C we have:�C(iC\D) = �D(iC\D); (6)that is, if the cliques C and D overlap, then the parameters �C and �D are such that eachimplies the same marginal distribution for �C\D. Dawid and Lauritzen (1993) have shownthat there exists a unique \hyper-Dirichlet" distribution for � over M such that �C has themarginal density D(�C) for all C 2 C.In practice, one would construct a hyper{Dirichlet distribution by �rst identifying aperfect ordering of the cliques fC1; : : : ; Cng. Place a Dirichlet distribution D(�C1 ) on �C1;next place a Dirichlet distribution D(�C2 ) on �C2 , with parameters constrained by (6) andrealizations constrained so that �C1\C2 is identical for �C1 and �C2. For each subsequent cliqueCi, place a Dirichlet on �Ci such that the parameters and the realizations of that distributionare consistent with those speci�ed for the previous cliques.This prior distribution is conjugate with multinomial sampling. Simple expressions forposterior distributions and likelihoods are provided in Dawid and Lauritzen (1993).2.4 Directed vs Undirected Graphical ModelsIn general, probability distributions can have conditional independence properties more com-plex than can be represented with either an undirected or directed graph; see Pearl (1988).However, it is always possible to provide a graph for a probability distribution such that anyindependence assumptions present in the graph are true for the distribution{Pearl (1988)calls such a graph an I-map. A trivial example of this would be a fully connected undi-rected graph, which makes no independence assumptions at all. Thus, we can always �nd agraphical model which makes no false independence assertions, although it may have moreparameters than would be strictly necessary. If the graph is such that it is an I-map for adistribution, and every independence relationship in the distribution is represented in thegraph, Pearl (1988) calls it a perfect map of the distribution.Additionally, there are distributions such that there is an undirected graph that is aperfect map, but no directed graph that is a perfect map, and vice versa. These two types ofgraphs can express di�erent kinds of relationships, which raises the question of which typeshould be used for any given problem.In problems where some variables obviously are determined before others, or cause others,the directed graphs allow a direct representation of these assumptions. For example, if thereis a relationship between the kidney stone disintegration (D) kidney stone clearance (C), itis certainly D which inuences or causes or precedes C, and not the other way around; thus,an edge between them should point from D to C.8



Undirected models, in contrast, are best suited to problems where the variables aredetermined simultaneously, or perhaps are both inuenced by some variable which is notexplicitly modeled. For example, it does not make sense to say that an individual's eye colorinuences or causes his or her hair color, or vice versa, and so a relationship between thesevariables is better represented as an undirected edge.Many problems will include both kinds of relationships, motivating the use of graphswith both directed and undirected edges (Frydenberg, 1990). Currently we are extendingthe class of Bayesian graphical models to include such graphs.2.5 Accounting for Model UncertaintyA typical approach to data analysis is to initially carry out a model selection exercise leadingto a single \best" model and to then make inference as if the selected model were the truemodel. However, as a number of authors have pointed out, this paradigm ignores a majorcomponent of uncertainty, namely uncertainty about the model itself (Breslow, 1991, Draperet al. (1987), Draper, 1993, Hodges, 1987, Moulton, 1991, Raftery, 1988b). As a consequenceuncertainty about quantities of interest can be underestimated. For striking examples of thissee Regal and Hook (1991), Draper (1993), Miller (1984), and York and Madigan (1992).There is a standard Bayesian way around this problem. If � is the quantity of interest,such as a structural characteristic of the system being studied, a future observation, or theutility of a course of action, then its posterior distribution given data D is:pr(� j D) = KXk=1pr(� jMk;D)pr(Mk j D): (7)This is an average of the posterior distributions under each of the models, weighted by theirposterior model probabilities. In equation (7), M1; : : : ;MK are the models considered, themarginal likelihood for model Mk is given by:pr(Mk j D) = pr(D jMk)pr(Mk)PKl=1 pr(D jMl)pr(Ml) ; (8)where pr(D jMk) = Z pr(D j �;Mk)pr(� jMk)d�; (9)� is the vector of cell probabilities, pr(� jMk) is the prior for � under modelMk, pr(D j �;Mk)is the likelihood, and pr(Mk) is the prior probability that Mk is the true model.Furthermore, averaging over all the models in this fashion provides better predictiveability, as measured by a logarithmic scoring rule, than using any single modelMj (Madiganand Raftery, 1991).However, as Breslow (1991) points out, implementation of the above strategy is di�cult.There are two primary reasons for this: �rst, the integrals in (9) can in general be hard tocompute, and second, the number of terms in (7) can be enormous.We consider two approaches to this problem. Madigan and Raftery (1991) do not attemptto approximate (7) but instead, appealing to standard norms of scienti�c investigation, adopta model selection procedure. This involves averaging over a much smaller set of models than9



in (7) and delivers a parsimonious set of models to the data analyst, thereby facilitatinge�ective communication of model uncertainty. A second approach we propose here doesinvolve approximating (7) with a Markov chain Monte Carlo method.Before sketching the two approaches, we note that both involve repeated calculation ofterms like: pr(M0 j D)pr(M1 j D) (10)where M0 and M1 are graphical models which di�er by one link. In both the directed andundirected (decomposable) case these ratios can be calculated in a highly e�cient mannerentirely through local computations. For details, see Madigan and Raftery (1991).Two basic principles underly the approach of Madigan and Raftery (1991). Firstly, theyargue that if a model predicts the data far less well than the model which provides the bestpredictions, then it has e�ectively been discredited and should no longer be considered. Thusmodels not belonging to: A0 = (Mk : maxlfpr(Ml j D)gpr(Mk j D) � C) ; (11)should be excluded from equation (7) where C is chosen by that data analyst. Secondly,appealing to Occam's razor, they exclude complex models which receive less support fromthe data than their simpler counterparts. More formally they also exclude from (7) modelsbelonging to: B = (Mk : 9Ml 2 A;Ml �Mk; pr(Ml j D)pr(Mk j D) > 1) (12)and equation (7) is replaced bypr(� j D) = XMk2Apr(� jMk;D)pr(Mk j D) (13)where A = A0nB: (14)This greatly reduces the number of models in the sum in equation (7) and now allthat is required is a search strategy to identify the models in A. Two further principlesunderly the search strategy. Firstly, if a model is rejected then all its submodels are re-jected. This is justi�ed by appealing to the independence properties of the models. Thesecond principle | \Occam's Window" | concerns the interpretation of the ratio of poste-rior model probabilities pr(M0 j D)=pr(M1 j D). Here M0 is one link \smaller" than M1.The essential idea is shown in Figure 3: If there is evidence forM0 thenM1 is rejected but torejectM0 we require strong evidence for the larger model,M1. If the evidence is inconclusive(falling in Occam's Window) neither model is rejected. Madigan and Raftery (1991) adopted120 for OL and 1 for OR.These principles fully de�ne the strategy. Typically the number of terms in (7) is reducedto fewer than 20 models and often to as few as two. Madigan and Raftery (1991) providea detailed description of the algorithm and show how averaging over the selected models10



Inconclusive Evidence -� Strong Evidence for M1 Evidence for M06 6?OL ORFigure 3: Occam's Window: Interpreting the log posterior oddsprovides better predictive performance than basing inference on a single model in each ofthe examples they consider.Our second approach is to approximate (7) using Markov chain Monte Carlo methods,such as in Metropolis et al. (1953) and Hastings (1970), generating a process which movesthrough model space. Speci�cally, let M denote the space of models under consideration.We can construct a Markov chain fM(t)g; t = 1; 2; : : : with state space M and equilibriumdistribution pr(Mi j D). Then for a function g(Mi) de�ned onM, if we simulate this Markovchain for t = 1; : : : ; N , the average: Ĝ = 1N NXt=1 g(M(t)) (15)is an estimate of E(g(M)). Applying the ergodic theorem (see Breiman, 1968, or Chung,1967) for �nite irreducible Markov chains,Ĝ! E(g(M)) a:s: as N !1:To compute (7) in this fashion set g(M) = pr(� jM;D).To construct the Markov chain we de�ne a neighbourhood nbd(M) for each M 2 Mwhich is the set of models with either one link more or one link fewer than M and the modelM itself. De�ne a transition matrix q by setting q(M ! M 0) = 0 for all M 0 62 nbd(M)and q(M ! M 0) non{zero for all M 0 2 nbd(M). If the chain is currently in state M ,we proceed by drawing M 0 from q(M ! M 0); if M 0 is \legal" (it contains no directedcycles in the directed case and is chordal in the undirected case) it is accepted with somepositive probability chosen so that the process has the correct stationary distribution. Somepossibilities for these acceptance probabilities are given by Hastings (1970).The irreducibility of the transition matrix q is obvious in the directed case. For thedecomposable case it follows from Lemma 5 of Frydenberg and Lauritzen (1989).The choice of which approach to use | model selection or Markov chain Monte Carlomodel composition | will depend on the particular application. The model selection proce-dure will be most useful when one is interested in making inferences about the relationshipsbetween the variables. Averaging over all models (by brute force or Monte Carlo) will be11



appropriate for making predictions or decisions when the posterior distribution of somequantity is of more interest than the nature of the \true" model. However, each approach isexible enough to be used successfully for inference and prediction.Madigan et al. (1993a) contrast the two approaches. In each of the three applicationsthey consider the Monte Carlo approach provides better predictive ability than the Occam'swindow approach. However, either method provides improved predictive performance overinference based on any single model that might reasonably have been selected.We note that similar approaches are suggested by Cooper and Herskovits (1992).3 Bayesian Graphical Models for Closed PopulationEstimationWe now introduce the �rst of several applications demonstrating the utility of Bayesiangraphical models.3.1 IntroductionOne approach to estimating the size of a closed population is to use several methods to\capture" individuals in the population. Although these might be actual physical captures,here we will consider a capture to be the occurrence of a person's name on an administrativelist. If it is possible to uniquely identify the individuals or their capture histories, then thedata can be represented as a contingency table with one dimension for each capture method.The count for each cell gives the number of individuals with a particular capture history. Ofcourse, the count for the cell in which individuals were not caught by any of the methods isunknown. The goal of the analysis is to estimate the number of individuals in this cell andthence in the population.For example, consider estimating the rate at which the birth defect spina bi�da occurs.Hook et al (1980) gathered records on persons born in upstate New York between 1969and 1974 with this defect from birth certi�cates (B), death certi�cates (D), and medicalrehabilitation records (R). These di�erent records were compared, and each individual withthe defect was classi�ed as to whether or not they were found in each list. The data is givenin Table 1, where a value of 0 indicates that an individual was not found in that list, anda 1 indicates that he or she was found. A total of 626 individuals were found in the threerecord systems considered, out of a total of 863,143 live births; the question is, how manymore individuals were missed by all three?This is sometimes called the multiple record systems (MRS) problem and is related toexperiments where animals are physically captured or tagged (El-Khorazaty et al, 1977). Theessential di�erence between the two problems is that there will almost always be dependencebetween some of the lists in an MRS because of relationships between the administrativesystems and heterogeneity in the population. In contrast, when dependence between capturesis modeled in the capture-recapture literature it is usually done in a simple sequential manner,with one capture probability for individuals that have been captured before and another forthose who have not yet been captured (Wolter, 1986; Pollock and Otto, 1983; Otis et al12



R = 0 R = 1B = 0;D = 0 ? 60B = 0;D = 1 49 4B = 1;D = 0 247 112B = 1;D = 1 142 12Table 1: Spina Bi�da data1978). For an MRS, this approach will not be as useful, because the di�erent administrativesystems may be operating simultaneously and the dependencies between them may followsome more general pattern.Log linear models provide a exible approach to this problem, in which dependencebetween lists is explicitly modeled (Fienberg, 1972, Bishop et al, 1975, Hook et al, 1980).However, as highlighted in Section 2.5, to ignore model uncertainty in this context is to ignorean important aspect of uncertainty in predicting the population size. Inadequacies of modelselection routines for MRS problems have been illustrated by Regal and Hook (1991), andare discussed in more detail by York and Madigan (1992). Similar complaints about modelselection with standard capture{recapture models can be found in Merkins and Anderson(1988).Undirected decomposable Bayesian graphical models, as described in Section 2 provide aexible model class for this problem, facilitating the incorporation of prior expert knowledgeand accounting for model uncertainty.Denoting the total population size by N , and following the notation of Section 2, ourobjective is to evaluate the posterior distribution of N , given the observed data, D:pr(N j D) = KXk=1pr(N jMk;D)pr(Mk j D): (16)We assume a priori that N is independent of the model Mk, and thus (16) can be writtenas: pr(N j D) = KXk=1 pr(D jMk; N)pr(Mk)pr(N)=pr(D); (17)where: pr(D jMk; N) = Z pr(D j �;Mk; N)pr(� jMk)d�: (18)Here, � is the vector parameter of probabilities which de�ne Mk and is assumed to beindependent of N . York and Madigan (1992) provide formulae for pr(D j �;Mk; N) andpr(D), and explore the consequences of various prior assumptions for pr(Mk) and pr(N) andfor pr(� jMk), in the context of several examples.The component distributions of pr(� jMk) all involve the probability of capture on one ormore lists. One practical di�culty that arises is that the structure of this prior distributiondepends on Mk; recall that a Dirichlet distribution is required for each clique in the graphof Mk. This necessitates the elicitation of a di�erent prior distribution for every model.13



York and Madigan (1992) describe a pragmatic solution to this problem. Essentially, ourapproach is to elicit a prior distribution for pr(� jMk0), whereMk0 is a model with high priorprobability, chosen for convenient elicitation. Prior distributions for � under all the othermodels are then derived from pr(� jMk0), via a simple information theoretic argument. SeeSpiegelhalter et al. (1993) for a similar approach.Elicitation for undirected graphs can be di�cult. In the context of the spina-bi�daexample above, a link from say, B to D, could require the elicitation of a prior distributionover the 2� 2 table spanned by B and D. Madigan and Raftery (1991) describe in detail analternative approach whereby the prior distribution is elicited in the context of a directedgraph. Subsequently, prior distributions for the components of � implied by the undirectedmodel are derived.The key point is that the elicitation of informative prior distributions, while not with-out its di�culties, is possible. This is not the case for the equivalent distributions in theconventional log-linear framework.3.2 Example : Spina Bi�daThe results of a Bayesian graphical model analysis of the spina bi�da example of Table 1 aregiven in Table 2 and Figure 4. In the �gure, the value ofP (N j D;Mk)P (Mk j D)is plotted for any model Mk with non-negligible posterior probability. These curves showboth the shape of the posterior distribution of N for particular models, and, by the areabeneath them, their relative contribution to the overall posterior distribution. The sum ofthese curves gives the full posterior, averaged over all models. In this analysis, uniform priordistributions were adopted for the components of � under the largest model, all models wereassumed equally likely a priori and an informative prior distribution, based on historicaldata, was adopted for N . For details we refer the reader to York and Madigan (1992).We note that the posterior distributions for N under the three leading models are centeredat di�erent locations, and estimation of N conditional upon one model would depend a greatdeal upon the particular model chosen. Averaging over models, on the other hand, gives usa single posterior distribution that accurately reects our uncertainty about the correctmodel. A detailed coverage analysis is described in York and Madigan (1992) which showsthat model averaging provides prediction intervals which are much better calibrated thanthose based on a single model.The posterior means and standard deviations for the probability that an individual willbe found via any particular list are given in Table 3. It is awkward to come up with such\e�ciency" estimates in the conventional log-linear modeling framework. In contrast, themethods described here, directly and easily produce e�ciency estimates for each list.If we use our estimate ofN to compute a prevalence rate for spina bi�da for the populationof all live births, we arrive at an estimate of 0:847 per 1000 births, with 2:5th and 97:5thposterior percentiles being 0:790, 0:923. In comparison to the estimate of 0:725 per thousandif we assume that no cases were missed, there is substantial evidence that more than one caseper ten thousand is missed; and this is for a population count based on three separate lists.14



PosteriorModel Prob. N̂ 2.5%, 97.5%���������D R B 0.373 731 (701, 767)���������B D R 0.301 756 (714,811)���������B R D 0.281 712 (681,751)������TT �����B RD 0.036 697 (628,934)Model Averaging | 731 (682,797)Table 2: Summaries of the posterior distributions of N for the spina bi�da data for all modelswith posterior probability greater than 0.01. N̂ is a Bayes estimate, minimizing a relativesquared error loss function
Posterior PosteriorList Mean Std. DevBirth Certi�cate 0.699 0.032Death Certi�cate 0.284 0.020Medical Records 0.258 0.019Table 3: Posterior mean and standard deviation for the probability that a given list willcorrectly identify an individual with spina bi�da15
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Figure 4: Posterior distribution for the number of cases of spina bi�da for di�erent models.\Full Posterior" shows the posterior distribution averaged over all the decomposable Bayesiangraphical models
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The estimate of 0:699 for the e�ciency of birth certi�cates alone indicates that around 30%of the total cases would be overlooked if that registry were the sole source of information.3.3 Example : Spina Bi�da with CovariateOne of the bene�ts of using Bayesian graphical models for discrete data analysis is thecomparative ease with which models can be expanded. To illustrate this point we considerthe addition of a covariate, race, in the spina bi�da example. The data presented in Table 4are from Hook et al. (1980). In addition to the data in the table, there are 5 individualsfor whom we have no information on race. These �ve individuals had the following valuesfor (B;D;R) : (1; 0; 1), 3� (1; 0; 0), and (0; 1; 0). We compute the posterior distribution forN by summing over all 25 possible values of race for these 5 incomplete cases, as well assumming over the possible races of the unobserved individuals.Whites Blacks & OthersR = 0 R = 1 R = 0 R = 1B = 0;D = 0 ? 52 ? 8B = 0;D = 1 45 3 3 1B = 1;D = 0 230 107 14 4B = 1;D = 1 134 12 8 0Table 4: Spina Bi�da data, by RaceThe posterior distribution for N is displayed in Figure 5. Features of the posteriordistribution and the models which make the greatest contribution are given in Table 5.Most of the models which had high posterior probability in the previous analysis still havehigh probability here. The notable additions are several models with an interaction betweenbirth certi�cates B and ethnicity, E. The posterior probability of a link between the two is0:69; the posterior probability of any other link with E is less than 0:10. The models with alink to ethnicity tend to have higher estimates for the non-white population than the othermodels, indicating that the administrative lists seem to be missing proportionately morenon-whites than whites. However, inclusion of this information does not cause a change inthe overall estimate of the population size.E�ciencies of the various lists, broken down by race, are given in Table 6: birth certi�catesare considerably less e�ective in identifying spina bi�da cases in non-whites.3.4 Why Bayesian graphical models?Bayesian graphical models allow for exible modeling of inter-list dependencies together withan e�ective medium to communicate these dependencies, i.e., a graph. Furthermore, infor-mative expert knowledge can be expressed directly in terms of well-understood quantities,distributions for other quantities of interest such as list e�ciencies are easily computed,inclusion of covariates is straightforward (including missing values), and crucially, modeluncertainty can be e�ectively communicated and accounted for.17
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Posterior Whites Non-whitesLabel Model Prob N̂ (2:5, 97:5) N̂ N̂I ������������E B D R 0.223 731 (701,767) 683 48II ������������E B D R 0.185 756 (714,811) 699 56III ������������E B R D 0.168 712 (681,751) 660 50IV ������������E B D R 0.062 731 (701,767) 683 48V ������������B E D R 0.061 732 (702,769) 677 54VI ������������E B D R 0.052 756 (714,811) 706 49VII ������������B E R D 0.050 731 (701,767) 678 52VIII ������������E B R D 0.047 712 (681,751) 665 46Model Avg | 731 (689,794) 679 51Table 5: Summaries of the posterior distributions of N for the spina bi�da data for all modelswith posterior probability greater than 0.01 with race as a covariate.Whites Non-whitesList Mean Std. Dev Mean Std. DevBirth Certi�cate 0.710 0.033 0.565 0.107Death Certi�cate 0.285 0.020 0.282 0.031Medical Records 0.259 0.019 0.263 0.031Table 6: Posterior mean and standard deviation for the probability that a given list willcorrectly identify an individual with spina bi�da19



The restriction to decomposable models may be a real concern for some applications.For the spina-bi�da example, York and Madigan (1992) show that inclusion of the non-decomposable no-third-order-interaction model has little impact on the results.This methodology could be applied to capture-recapture models as well. The sequentialnature of those captures make directed graph representations more natural{see for exampleRodrigues et al. (1988).4 Multinomial Misclassi�cationIn this section we present a simple application of Bayesian graphical models with latentvariables from the �eld of systematic musicology. There are many approaches one couldadopt for this problem. The advantages of the Bayesian graphical model approach are that�rstly, the conceptual simplicity of the framework allows for the elicitation of informativepriors and secondly, unlike more conventional approaches, Bayesian graphical models caneasily be scaled up to include covariates and alternative sampling schemes.Our application concerns music expectancy, a psychological construct which has been ofinterest to musicians since the early part of this century (Bissell, 1921). Music expectancyis de�ned as the cognitive awareness of a future event to come in music as we listen, anawareness not only of the nature of the event to come, but also of when the event willoccur (Carlsen et al., 1992). Narmour (1990) has postulated certain patterns that musicalexpectancy should exhibit; these theories have intensi�ed interest in the subject. Carlsen(1981) and Unyk and Carlsen (1987) reported analyses of large music expectancy data sets.We set out to re-analyse this data in the light of Narmour's new work, and to assess whatlevel of support the data provided for his theories (Madigan et al., 1992).The melodic expectancy studies of Carlsen all utilised the so-called \production re-sponse": participants in those studies were presented with the 25 two-note melodic be-ginnings possible within the octave (12 ascending, 12 descending and the unison). Theywere instructed to consider that interval as the beginning of an interrupted melody and wereasked to sing immediately (in tempo) the expected continuation of the melody as if it hadnot been interrupted. The data is represented as a 25 � 25 table of counts representing the25 melodic beginnings and the 25 melodic continuations within an octave (less than 1% ofthe melodic continuations were outside an octave). The particular data set we consider wascollected in the U.S.A. and contains 12,262 data points.Narmour's \Implication-Realization"model consists of a template within this table whereexpectancies are postulated to exist|see Figure 6.Our initial e�ort to contrast the data with Narmour's model was to construct an equiv-alent empirical model by simply thresholding the data. Cells with fewer than a certain levelof counts were deemed to be `outside' and the remainder `inside' an empirical template.However, the arbitrariness of the threshold was problematic. For a signi�cant number ofcells it was unclear whether they represented genuine expectancies and should therefore beincluded in the template, or whether the counts were spurious and recorded in error.Further consideration suggested that such errors could arise in two ways: �rstly, singererror (SE) whereby the subject could fail to produce the note they had intended to sing, andsecondly, listener error (LE) whereby the listener transcribing the subject's sung response20
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-1-2-3-4-5-6-7-8-9-10-11-12-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12Melodic ContinuationMelodicBeginningFigure 6: Narmour's Model. The \�"'s represent melodic continuations that are predictedto occur for each melodic beginning. No predictions are made for the octave and tritonemelodic beginnings (-12, -6, 6, and 12).
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could make an error. For a single melodic beginning this sugegsts the graphical model ofFigure 7. Here, LE and SE are binary variables indicating whether or not a listener error ora singer error have occurred, MCT is the true unobservable melodic continuation and MCFis the recorded (fallible) melodic continuation.
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� JJJJ]6LE SEMCFMCTFigure 7: Initial Graphical Expectancy ModelThis model requires the elicitation of prior distributions for pr(MCF j MCT,LE,SE),pr(LE), pr(SE) and pr(MCT). Our approach was to elicit measures of location for thesequantities and chose the scale to give di�use Dirichlet priors. A Je�reys prior was used forpr(MCT).The model of Figure 7 embodies the assumption that LE, SE and MCT are mutuallyindependent. However, it was felt that singer errors were more likely to occur for largeintervals (tritone or larger) than smaller intervals. Concerning listener error, evidence pre-sented in Unyk and Carlsen (1987) suggested that transcription errors were more likely tooccur when the melodic beginning has high expectancy generating strength (e.g. C � Dwhich generates an expectancy of either E or C in the vast majority of subjects) and thisexpectancy is violated (e.g. C �D followed by G]). The adjusted Bayesian graphical modelreecting these dependencies is given in Figure 8 and the required prior distributions, i.e.pr(MCF j MCT,LE,SE), pr(LE j MCT), pr(SE j MCT), and pr(MCT), were easily elicited.For details, we refer the reader to Carlsen et al. (1992).What we are interested in is of course the distribution of MCT and in particular, theprobability that all the counts in a given cell are spurious. A Gibbs sampling technique wasemployed to estimate these probabilities using the data augmentation idea of Tanner andWong (1987)|see also Smith and Roberts (1993). A complication that arises here is thata Gibbs sampler Markov chain de�ned on the model of Figure 8 will not be irreducible|itis not possible to get from a state with neither listener error nor singer error to a statewith errors updating just one variable at a time. A simple solution to this problem is toperiodically update two variables, i.e. an error variable and an melodic continuation variable,simultaneously.The resulting empirical model is shown in Figure 9. Cells marked O had no observationsand are deemed to be `outside' the template. Cells marked I, never had a zero count in 5,000iterations of the Gibbs sampler and are deemed to be `inside' the template. Cells marked22
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� JJJJ]6 ���@@ILE SEMCFMCTFigure 8: Graphical Expectancy ModelF for `fuzzy' did have non-zero counts in the dataset but the probability that they are allspurious is non-zero.Comparing Figure 9 with Narmour's I-R model (Figure 6), it is clear that there aresubstantial areas of disagreement between the two models. For a detailed comparison of thetwo models see Carlsen et al. (1992).The method we have adopted here is a form of multinomial smoothing. A similar ap-proach is suggested in Titterington (1985). Bayesian graphical models provide a practicalmethod for doing this and allow for incorporation of expert knowledge expressed in terms ofreadily understood quantities. This is the chief advantage of the Bayesian graphical model-based approach in this application and provides a method to carry out "knowledge-based"smoothing as against the rather more arbitrary kernel-based methods.5 Double Sampling5.1 IntroductionSuppose you are presented with the following task: estimate the proportion of newbornsborn with jaundice nationwide. The data to hand consists of records of 500 births where itis recorded at birth by the midwife or gynecologist whether or not the child is jaundiced. Thisclassi�cation however is only based on a visual inspection of the child and may be incorrect.For a random subsample of 100 of the births highly accurate (but expensive) pathology testsare also available. Fictituous data are presented in Table 7 where DF indicates the child isjaundiced according to the \fallible" visual inspection and DT indicates jaundice accordingto the true or \infallible" pathology test (assumed here to be without error).There are two obvious ways to estimate the required proportion. Just using the infalliblepathology data gives an estimate of 0.68 with a standard deviation of 0.047. Alternatively,using just the visual data gives an estimate of 0.56 with a standard deviation of 0.022. Theformer estimate is una�ected bymeasurement error but has a rather large standard deviation.The latter estimate may be biased but has a small standard error. Neither estimate utilisesinformation about the accuracy of the visual test contained in the cross-classi�cation of DT23
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-1-2-3-4-5-6-7-8-9-10-11-12-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12Melodic ContinuationMelodicBeginningFigure 9: Fuzzy Empirical Expectancy Model Model. The \�"'s represent melodic con-tinuations that are predicted to occur for each melodic beginning. The \�"'s representcontinuations for which the data is ambiguous. No predictions are made for the octave andtritone melodic beginnings (-12, -6, 6, and 12).Visual and PathologyDF DFDT 61 7DT 1 31 100Visual OnlyDF DF218 182 400Table 7: Double Sampling: Jaundice Data24



and DF . What you would like to do is estimate pr(DT ) using all the data to hand, andideally, estimate the accuracy of the visual test at the same time.A straightforward maximum likelihood solution to this problem with attendant asymp-totic standard error estimates was presented by Tenenbein (1970, 1972). Extensive generali-sations of Tenenbein's work have been reported by Chen (1979, 1989), Ekholm and Palmgren(1987), Ekholm (1991), Espeland and Hui (1987), Espeland and Odoro� (1987), Lie et al.(1991a) and Nedelman (1988)|this list is by no means exhaustive. A Bayesian approachwas presented by Geng and Asano (1989).Here we present an approach to double sampling which is based on Bayesian graphicalmodels. This allows us to account for model uncertainty, incorporate prior expert knowledgeand tackle larger problems for which the conventional methods become unwieldy.We begin by presenting in Figure 10 a trivial directed Bayesian graphical model for thejaundice example. As this is the only sensible model for this application, there is no modeluncertainty. However, the graphical framework does facilitate the incorporation of priorknowledge through the elicitation of informative prior distributions for pr(DT ), pr(DF j DT )and pr(DF j DT ). Posterior distributions for quantities of interest are then derived via theGibbs sampling method adopted in Section 4.����DT ����DF-Figure 10: Double Sampling: Jaundice DataFor this �ctituous example, Je�reys prior distributions were used in place of informa-tive prior distributions. The consequent \as if" posterior distribution for pr(DT ) is shownif Figure 11. The posterior mean and standard deviation for pr(DT ) are 0.63 and 0.026respectively. This data was also analysed by Tenenbein (1970) and his corresponding esti-mates were 0.63 and 0.033. Point estimates for pr(DF j DT ) and pr(DF j DT ) are 0.034 and0.131 for the Bayesian graphical model. Tenenbein's corresponding estimates are 0.025 and0.129. The Bayesian graphical model estimates are quite insensitive to the choice of priordistribution.Chen (1979), Chen et al. (1984) and Espeland and Odoro� (1985) introduce covariates,triple sampling and extra doubly sampled variables respectively into the above framework.The standard approach is to �t recursive systems of log linear models with maximum likeli-hood estimation via the EM algorithm. Ekholm and Palmgren (1987) adopt a more straight-forward approach forming a single model with interpretable parameters. However, in eachcase, the analysis is characterized by tedious likelihood calculations and obscure derivationsof asymptotic properties. The Bayesian graphical model approach by contrast, extends in asimple fashion to more complex models. Posterior distributions of many quantities of interestare easily derived. 25
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Figure 11: Posterior Distribution for pr(DT )5.2 Example : Down's Syndrome in NorwayWe present the complete Bayesian graphical model approach to double sampling in the con-text of an example which was introduced by Lie et al. (1991a) and is further analyzed byYork et al. (1992). Since 1970, epidemiological surveillance of congenital malformations hasbeen carried out in Norway on the basis of data in the nationwide Medical Birth Registry(MBR). This data is collected at birth by the midwife or obstetrician and corresponds to thevisual inspection in our �ctitious jaundice example above. Because of growing concerns aboutincomplete ascertainment, a new noti�cation system entitled \Melding om FosterindiserteAborter og Medf�dte Misdannelser" (MIA) was introduced in 1985 in the county of Horda-land covering about 15% of all births in Norway. The MIA registration is based on prenataldiagnostics and pediatric follow-up including results from cytogenetic tests. However, unlikethe �ctituous jaundice example, the MIA registration is subject to error. Data concerningDown's syndrome collected between 1985 and 1988 is presented in Table 8. For furtherdetails, we refer the interested reader to Lie et al. (1991a,b).Bayesian graphical models overcome two substantive di�culties with the analysis of thisdata presented by Lie et al. (1991a). First, although both of their models provide a reason-able �t to the data, Down's syndrome prevalence estimates and corresponding asymptoticstandard errors are quite di�erent under the two models. The Bayesian graphical modelframework accounts for this model uncertainty. Second, Lie et al. (1991a) did not considerany covariates such as maternal age in their analysis. Because of the strong association with26



Doubly Sampled DataR1 R1R2 8 9R2 13 17847 27877Singly Sampled DataR1 R1233 188790 189023Table 8: Down's syndrome data for 1985{1988 : R1 represents case ascertainment throughthe national MBR registry and R2 through the regional MIA registry.maternal age, a complete study of the prevalence of Down's syndrome should include thiscovariate (Lie et al., 1991b). However, the complexity of the existing analysis, in particularthe calculation of asymptotic variances, suggests that such expansions would be di�cult.Again, the Bayesian graphical model framework greatly facilitates both the incorporation ofcovariates.The directed models we consider are subject to the constraint that links connecting error-free but possibly unobserved variables and error-prone observed variables are in the naturalcausal direction, i.e. from the error-free to the error-prone. A Markov chain Monte Carlomethod was adopted for the analysis of the data of Table 8 augmented by maternal age (insix categories). Denoting by �, the prevalence of Down's syndrome, and by Y , the observeddata, we want to compute pr(� j Y ). To account for model uncertainty and integrate overZ, the missing data on the singly sampled cases, we re-express this as:pr(� j Y ) =Xpr(� jM;Y;Z)pr(M;Z j Y )where the summation is over all models, M , and all possible states of the missing data,Z. This can be numerically approximated by simulating a process f Z(t);M(t) g withstationary distribution pr(Z;M j Y ). A schematic version of the simulation method adoptedis presented in Figure 12.If necessary, simulating from pr(M j Z; Y ) can utilize a Metropolis step, as described inSection 2.The results of a Bayesian graphical model analysis of the Down's syndrome data aregiven in Table 9 and Figure 13. In this analysis, all models were assumed equally likely apriori and informative prior distributions, based on historical data and expert knowledgewere placed on the various probabilities. For details we refer the reader to York et al. (1992).The analysis assumes that there are no false positives, which is reasonable in this context.Models with a `*' on the R1, R2 link impose a special kind of dependence where it is assumedthat the MIA registry, R2, will �nd all cases missed by the national registry, R1.Except for the inclusion of the age covariate, the �rst two models in Table 9 correspondrespectively to the two models examined by Lie et al. (1991a). Their �rst model produced amaximum likelihood estimate for 103�pr(S) of 2.02 with a standard deviation of 0.35, while27



?����� AAAAUpr(M j Y )pr(M;Z j Y ) Augmentpr(Z j Y;M) pr(M j Z; Y ) Gibbs?����� AAAAUpr(Z; � j Y;M) Augmentpr(Z j �; Y;M) pr(� j Z; Y;M) GibbsFigure 12: Markov Chain Monte Carlo Model Composition with missing data. In order togenerate a process with the stationary distribution given at the top of the tree, we simulateiteratively from the distributions at the leaves of the tree.
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Post. 103 � pr(S) pr(R1 j S) pr(R2 j S)Model Prob. Mode Mean Std Dev Mean Std Dev Mean Std Dev��������������A S R1R2- ��*HHj 0.282 1.81 1.92 0.292 0.376 0.085 0.555 0.092��������������A S R1R2- ��*HHj ?� 0.385 1.49 1.51 0.129 0.223 0.053 0.470 0.083��������������A S R1R2- ��*HHj ? 0.269 1.60 1.70 0.252 0.312 0.088 0.513 0.089��������������A S R1R2- ��*HHjXXXXXz 0.030 1.71 1.78 0.226 0.333 0.076 0.518 0.090��������������A S R1R2- ��*HHj ?�XXXXXz 0.016 1.50 1.52 0.129 0.226 0.054 0.517 0.080Model Averaging | 1.54 1.69 0.289 0.292 0.099 0.508 0.095Table 9: Features of the posterior for Down's syndrome prevalence and the error probabilities of the tworegistries. Prevalence is given as the rate per thousand. Only models with posterior probability larger than0:01 are listed; all models are included in the model averaging results.
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Figure 13: Overall posterior for Down's syndrome rate per 1000 when the mother's age is included as acovariate, along with the posterior for each individual model scaled according to its posterior probability.
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their second model gives 1.49 and 0.13. Our analysis accounts for the this model uncertainty,averaging over all the models. Furthermore, incorporation of the maternal age substantiallyimproves model �t and allows for age-speci�c reporting, such as in Figure 14.5.3 Why Bayesian Graphical Models?Bayesian graphical models extend the reach of multiply sampled data analysis into hereto-fore intractable areas. Models of considerable complexity can be considered and posteriordistributions for a variety of quantities of interest derived. Expert knowledge can realisticallybe incorporated and model uncertainty can be accounted for.One note of caution: the Markov chain Monte Carlo method outlined here may runinto some practical di�culties in the analysis of very large datasets. The essential problemis that the missing data conveys considerable information about the best models. Conse-quently, their joint distribution, pr(M;Z j Y ) can be highly multimodal. We are currentlyinvestigating possible solutions to this problem{see also Besag and Green (1993) and Lin(1992).6 Data Quality: Predicting Errors in Databases6.1 IntroductionA recent article by Strayhorn (1990) introduced an important class of problems in dataquality management. The techniques developed potentially have wide application in qualitycontrol or indeed in any environment where awed items must be detected and counted.Strayhorn was motivated speci�cally by the quality control of research data. He points outthat while large numbers of journal pages are devoted to the quanti�cation and control ofmeasurement error, possible errors in data are rarely mentioned (see Feigl et al., 1982, for anotable exception).Strayhorn (1990) presented two methods for estimating error rates in research data: theduplicate performance method and the known errors method. However, his analysis washeavily criticized by West and Winkler (1991), hereafter referred to as WW, who presentBayesian analyses of the two methods. Madigan et al. (1993b) introduce a third method, theduplicate checking method, and show how Bayesian Graphical models provide for a simpleand extensible analysis of all three methods.Here we briey describe these Bayesian graphical models and the possibilities theypresent.6.2 Duplicate Performance MethodSuppose that a large number, N , of paper-based medical records must be entered into acomputer database, and further suppose that two data entry personnel, � and ! are availableto carry out this task. The idea is that both independently key in the data and then theresulting computer �les are compared item by item by a method assumed to be error free.Where there is disagreement, the original paper record is consulted and the disagreement32



settled. Let d be the total number of disagreements found in this way, d = x�+x!, where xjis the number of errors attributable to j, j = �; !. The only errors remaining are the subsetof the N � d records where both � and ! were in error. The intuition is that if the ratio ofdisagreements to total items, dN , is low, the individual error rates of � and ! are low, andthe probability of joint errors is lower still.Because � and ! carry out their tasks independently a trivial Bayesian graphical model forthis situation has two unconnected nodes A� and A!, where Aj is a binary random variableindicating whether j entered a particular record correctly or not, j = �; !. WW suggest thatin practice d=N will typically be small so that agreement between � and ! will occur for mostrecords. For binary records, this sort of data will often be equally consistent with both typistsbeing almost always correct or both being almost always incorrect. Consequently, uniform[0; 1] priors on pr(A�) and pr(A!) will result in heavily bimodal posterior distributions.To counteract this problem, WW put prior distributions on pr(A�) and pr(A!) which onlyinclude values larger than 0:5 in their support. This takes them outside the class of conjugatepriors however. This bimodality problem can also be avoided by using informative priorswhich are centered on a value greater than 0.5, thereby assuming a priori that the typistsare more likely to enter data correctly than not. This approach retains conjugacy whichproves very useful when performing the calculations. Furthermore prior distributions whichare truncated at 0.5, especially the uniform prior on [0:5; 1], will typically provide a poormodel for prior expert knowledge. A! A!A� z x!A� x� N � x� � x! � z NTable 10: Duplicate Performance Method TableThe framework for this method may be represented as a 2� 2 table|see Table 10. Herez represents the number of records where � and ! are both correct. Then we have:pr(z j x�; x!; N) / pr(z; x�; x! j N)= Z� pr(D j N; �)pr(�)d�where D represents complete data and � is the vector parameter for the cell probabilities.In Table 11 we present results for some of the hypothetical datasets considered by Stray-horn and WW assuming \informative" prior beta(1,3) distributions for pr(A�) and pr(A!).This assigns both quantities a prior mean of 0.75 and standard deviation of 0.19. For eachdataset we show the probabilities of various undetected error counts. Also provided is theprobability assigned to the event that all the events on which there is agreement are in error{this is to demonstrate that the bimodality problem is adequately addressed through the useof reasonable informative priors. The probability of zero undetected errors is included fromthe WW analysis for comparison purposes. 33



WW pr(z j x�; x!)n x� x! pr(z > 0 j x�; x!) z=0 z=0 z=1 z=2 z=3 z=4 z=5 z=6 z=max20 2 3 0.46 0.27 0.54 0.26 0.10 0.04 0.02 0.01 0.01 0.0020 1 1 0.17 0.59 0.83 0.14 0.03 0.01 0.00 0.00 0.00 0.0020 1 0 0.09 0.71 0.91 0.08 0.01 0.00 0.00 0.00 0.00 0.005000 50 50 0.41 0.58 0.59 0.31 0.08 0.02 0.00 0.00 0.00 0.005000 25 25 0.13 0.86 0.87 0.12 0.01 0.00 0.00 0.00 0.00 0.005000 5 5 0.01 0.99 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.005000 2 3 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00Table 11: Duplicate Performance Method: Hypothetical Data and Predictive Probabilitiesfor Undetected Errors, Independent Be(1,3) Priors for pr(A�) and pr(A!). n is the totalnumber of records, x� and x! are the number of errors attributable to each of the twocheckers and z is the number of undetected errors.6.3 Duplicate Checking MethodA somewhat di�erent approach was alluded to but not analyzed by WW, and we refer to thisas the duplicate checking method. Here we assume that the database already exists and thetask of our two friends � and ! is to independently check each record in the database. WWmake an important assumption that error free records are classi�ed correctly although ouranalysis does not require this assumption. Thus the method may be represented as in Figure15 where Di now indicates whether or not i detected an error and X is a binary randomvariable indicating whether or not the record in the database is correct. The key point isthat we have an extra piece of information here, namely the number of records for whichboth � and ! detect errors. This is similar to several of the previous examples and againinformative prior distributions can be readily elicited in terms of well-understood quantities.We refer the reader to Madigan et al. (1993b) for numerical examples.���� �����������@@ID� D!XFigure 15: Duplicate Checking Method6.4 Known Errors MethodThe known errors method is described by Strayhorn (1990) as follows: \In this method,a member of the research sta� completes the data operation in question. The data are34



��������-XT XFFigure 16: Known Errors Methodthen presented to a second person, for example, the supervisor of the sta� member, whointroduces a certain number of `known errors' into the data set. The locations and forms ofthese errors are recorded elsewhere. Then the data set together with known and unknownerrors, is given to another sta� member, who checks the data set."WW provide two elegant analyses of this method. Our purpose here is to point outthat the known errors method is a special case of double sampling. Here we have a simpleBayesian graphical model with two nodes, XT , representing the true state of the record, andXF , a \fallible" version representing what the checker has recorded. For the original datawe only have observations on XF while for the known errors, both nodes are recorded. Tobe consistent with the analysis of WW, uniform prior distributions were used. Note that theknown values of XT are not used when updating the distribution of pr(XT ).The results presented in Madigan et al. (1993b) are essentially identical to those of WW.6.5 Why Bayesian graphical models?We have outlined how directed Bayesian graphical models provide for a straightforwardanalysis of three database error checking methodologies. In each case informative priordistributions can easily be speci�ed in terms of readily understood quantities and modelingassumptions are transparent. The calculations in each case are straightforward, providingoutputs which are much easier to interpret than Strayhorn's con�dence intervals.However, the real strength of the Bayesian graphical modeling approach for these prob-lems is that it can be generalised in a simple fashion. In particular, the generalizationssuggested by WW and Madigan et al. (1993b), can easily be incorporated. These includerelaxation of the no-false-positive assumptions, varying error rate probabilities according tosome characteristic of the data records, adding additional checkers, mixing duplicate andknown errors methods, and sampling only a portion of the database.7 DiscussionWe have attempted to show that Bayesian graphical models represent a powerful uni�edframework for a wide variety of discrete data problems. Modeling assumptions are entirelytransparent and computations are simple to program. Expert knowledge can easily be in-corporated and model uncertainty accounted for.35



The methods we discuss can readily be extended in two particular directions. First,graphical Gaussian models could be included. These were introduced as covariance selectionmodels by Dempster (1972) and are discussed in Whittaker (1990). The variables beingmodeled in a graphical Gaussian model have a multivariate normal distribution. Conditionalindependencies, which correspond to zeroes in the inverse variance, are represented by anundirected graph. The Bayesian framework for these models has been developed by Dawidand Lauritzen (1993). Recent extensions to this model class described by Cox and Wermuth(1993) are of considerable interest in this context.Second, the graphs we consider here are either undirected or fully directed. The methodscould be extended to include chain independence graphs, also called block recursive graphsby Lauritzen and Wermuth (1989). These graphs may both directed and undirected linksand provide support for a richer class of models.A very valuable development would be to include the mixed discrete/continuous modelsof Wermuth and Lauritzen (1990) and Edwards (1990).Appendix I: Graph Theoretic TerminologyThe terminology we use is largely adapted from Lauritzen et al. (1990).A graph is a pair G = (V;E) where V is a �nite set of vertices and the set of edges, E,is a subset of V � V of ordered pairs of distinct vertices. Edges (�; �) 2 E with both (�; �)and (�; �) in E are called undirected, whereas an edge (�; �) with its opposite (�; �) not inE is called directed.If the graph has only undirected edges it is undirected and if all the edges are directed,the graph is said to be directed. Our graphs are either directed or undirected.If A � V is a subset of the vertex set, it induces a subgraph GA = (A;EA), where theedge set EA = E \ (A�A) is obtained from G by keeping edges with both endpoints in A.A graph is complete if all vertices are joined by an edge. A subset is complete if it inducesa complete subgraph. A complete subset that is maximal with respect to inclusion is calleda clique.In a directed graph, if (�; �) 2 E, � is said to be a parent of � and � a child of �. Theset of parents of � is denoted by pa(�) and the set of children by ch(�).In an undirected graph, if (�; �) 2 E, � and � are said to be adjacent or neighbours. Theboundary, bd(A), of a subset A of vertices is the set of vertices in V nA that are neighboursto vertices in A. The closure of A is cl(A) = A [ bd(A).A path of length n from � to � is a sequence� = �0; : : : ; �n = � of distinct vertices such that (�i�1; �i) 2 E for all i = 1; : : : ; n. Ifthere is a path from � to � we say that � leads to � and write � 7! �. The descendantsde(�) of � are all the vertices � such that � leads to �. The nondescendants are nd(�) =V n(de(�) [ f�g). The vertices � that lead to � are called the ancestors of �, denoted byan(�).A subset A � V is an ancestral set if it contains all its own ancestors, i.e if an(�) � Afor all � 2 A.A chain of length n from � to � is a sequence � = �0; : : : ; �n = � of distinct verticessuch that (�i�1; �i) 2 E or (�i; �i�1) 2 E for all i = 1; : : : ; n.36
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