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Preface

This textbook is intended to the R user already accustomed to the General-
ized Linear Model and wants to extend his knowledge with the analysis of
correlated discrete data. Without special help, a new R user should easily
get inside the code, although we assume a general background in statistics,
and a specific understanding of GLM.

The two books of Molenberghs & Verbeke sound as though they re-
ally were wrotten for becoming familiar with GLMM without any slow and
painful mathematics. They emphasize a general modelling approach, from
theoretical concept to algorithmic considerations, still retaining practical
issues at hand.

I choose to present the second of their books, Models for Discrete Lon-
gitudinal Data, as I am working with this kind of data most of the time.
However, they use the SAS System to carry their numerical applications.
Every statistician would acknowledge the notoriety of this piece of software,
but now R has come to a degree of sophistication and notoriety that make
unlikely not to find a dedicated function to kindly do the job you ask for.
So, why not switch to R ? Did you ever seen something as harder to do as
plotting a simple graph with SAS ? Why borrying with the GPLOT syntax
since R provides much than we need to plot longitudinal data ? Further-
more, apart from the fact that the syntax changes from one procedure to
the other (e.g. specifying a model largely differs between PROC MIXED and
PROC GENMOD despite the fact that we only treat the data as discrete in
the latter case...), I found that SAS scripts are not fully understandable at
first sight. They merely seem to be extract from the obfuscated C coding
challenge (www.ioccc.org). However, one must agree that SAS offers some
standardized and well recognized statistical procedures. Well, R too. ..

Finally, I also choose to organize this textbook with the practitioner
approach in mind. Thus, each chapter corresponds to a given dataset and
is divised into several section, each tackling a different question about the
data.

A brief description of the motivating study used throughout the textbook
of Molenberghs & Verbeke is provided at the beginning of each chapter.

All materials related to the two textbooks published by these authors
can be found on the website : www.censtat.uhasselt.be/software/.

I have translated the datasets from SAS format (sas7bdat) into csv files
as this the best choice for dealing with data into R. For those who want
to analyse the data using the SAS System, the original datasets are also
provided. All analyses were done with R version 2.6.0 (2007-10-03). Some R
packages are mandatory for replicating the results (gee, 1me4), while others
might be very useful for going beyond the simple exploration of the data
structure and provide exciting graphical displays (e.g. lattice).
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Chapter 1

A brief overview

This chapter aims at describing the basic properties of Generalized Lin-
ear Mixed Models. We will try to provide an as comprehensive as pos-
sible overview of the statistical properties of the various models helded
under this model family. For this purpose, we will follow the organiza-
tion of Molenberghs & Verbeke’s book. First, after recalling the reader to
the basics of Linear Mixed Models, we will describe the two general mod-
elling approaches: the subject-specific centred or conditional model, and the
population-averaged centred or marginal model. Highlighting the strength
of each one, we will also present their derivatives, ranging from. ..

1.1 A review of the basic properties of GLM

This section provides a refresher about the classical Generalized Linear
Model, where we assume that collected observations are all independant
and identically distributed according to a distribution that is a member of
the exponential family. This includes, but is not limited to:

e the binomial, derived from the Bernoulli schema and typically used to
model binary data (presence/absence, correct/false, etc.);

e the Poisson, involved in the modeling of rare events;

e the negative binomial, most often used as an alternative to the Poisson
distribution when we want to take into account over-dispersion (free
and eventually larger scale parameter than in the Poisson case, where
EY) = V() = p);

e the hypergeometric, used in the light of sampling without replacement.

Basically, a random variable Y is said to follow a distribution belonging
to the exponential family if its density can be expressed as a function of
both a natural or canonical parameter, denoted 6, and a scale parameter,



¢. Usually, this function require two additional functions, () and ¢(-,-),
which link these parameters together with the observations. Thus, we have
the general formulation of the density function:

Fy) = fy10,0) =exp{o™ [y — »(0)] + c(y, d)} (1.1)
It can be shown very easily that
BY) = v(0)

V(YY) = ¢v'(9)

but the most important relation stands for the mean p = E(Y) and the
variance which are related through

o® = " [ ()] = dv(p),

with v(u) called the variance function. An important issue is whether we
choose to specify v(u) as belonging to the exponential family, in which case
standard likelihood estimation techniques are still avalaible, or if we use
instead a set of estimating equations for v(u) in order to get so-called quasi-
likelihood estimates.

Many statistical textbook relate the previously discrete distributions to
the exponential family, and one can easily express each of these distribution
under the form 1.1. For instance, the density function of a binomial process
can be rewritten as

1—m

) = exp i (17 ) 11 =)

with Pr(Y = 1) = m. Here, the natural parameter 6 is the logit of =
(In[r/(1 — 7)]), the scale parameter equals unity, ¢ = 1, and the mean
and variance are pr = 7 and v(w) = 7(1 — 7). Of course, we can use a
different link function (probit, log-log, complementary log), and we know
that there is little difference between logit and probit, except for the tails of
the distribution (but see 2.2.

In order to get a linear model, we just have to write the link function as
a linear combination of explanatory variables, for instance

In <1 7_Tz7r> = x50, (1.2)

__exp(xf)

1+ exp(zi8)

Now that we have set up the general working scenario, we could rely
on maximum likelihood estimation to draw inference about the parameters

or equivalently

7



of interest. The likelihood is simply the product of the density function
and conversely, the log-likelihood equals the sum of log densities. With
binomially i.i.d. observations, we have

In the general case, and using expression 1.1, we usually have

L N
0B, ¢) = P > vl —(0:) + Y ey, ¢)- (1.3)
i=1 i=1

Several techniques can be used to test for the significance of a formal hy-
pothesis (e.g. Wald test). Before that, we have to calculate the estimates of
our parameters. Score equations are obtained from equating the first-order
derivatives of ¢(3, ¢) to zero and are

S(8) = X G — /() =0,

Since p; = ¢'(0) and v; = v(u;) = " (6;), it follows that

8/%’_ 7 '%_ %
86_1/)(61)86_VZ8/8

which implies

00) = 32 5 s - ) =

Such equations have to be solved using iterative algorithms, such as iter-
atively reweighted least squares, Newton-Raphson or Fisher scoring. Most
of the time (that is, except in the logistic case), ¢ is unknown and has to
be estimated too. This involves estimation of the standard errors of the
elements in 3. As V(Y;) = ¢v;, we can use

1
N-—p

¢ = > (i — fa)? /vilfia)

i

as a consistent estimator of ¢. The interested reader can refer to Cullagh and
Nelder [1989] for further considerations on estimation in the GLM frame-
work.

1.2 The Linear Mixed Models

Note to the reader: As this section provides a very elegant
and useful summary of inference based on Linear Mixed Model,
I here reproduce most of the text of Molenberghs & Verbeke.



1.2.1 The gaussian case

As Molenberghs & Verbeke stated at the beginning of Chapter 4, the LMM
for gaussian correlated data yet provides some clues to get a better under-
standing of the problems yieded by correlated data. So, before investigating
the case of categorical repeated measurements, let’s start with the somewhat
“easier” gaussian case.

For continuous data, we already know that the linear model allows us
to fit a linear combination of predictors to the measured response variable,
under normality assumptions. To take into account the presence of corre-
lated mesurements, two simple approaches can be undertaken. First, we
can formulated a multivariate analog to the univariate linear model, used
for instance in linear regression. In this approach, each component is mod-
elled as a univariate linear regression model, together with the association
structure which is specified through a marginal covariance matrix. Second,
we can use a random-effect approach, in which we fit a separate intercept for
each subject (considered here as a cluster or level 2 structure). In this latter
scheme, also called a conditional approach, we focus on individual subject
rather than directly assessing the mean response as in the multivariate or
marginal model.

Let’s take an example which shall be more illustrative. Suppose we have
a sample of N measurements, assumed to be the realization of a random
variable Y. Our dataset consists in a set of y; responses, ¢ = 1... N, some
of which belong to the same subject.

A first approach would consist in a multivariate regression model, where
we assume that each component of the response vector Y, denoted as Y; =
(Yi1,...,Yi,), enters in a linear relationship with the predictor(s). Writ-
ting down the i components with j repetaed measurements as Y;; = (o +
Bitij +€ij, and assuming that ;; ~ N (0, 02), we then have a set of i regres-
sion equations (one for each subject). In matrix notation, we can always
find a design matrix such that ¥; = X;8 + ¢;. In this case, 3’ = (8o, 31) is
our object of interest. We achieve the specification of this model by speci-
fying a covariance matrix V; for the residuals ¢; and we have our marginal
multivariate model:

Yi ~ N (X, Vi) (1.4)

where V; = 021, with I,,, denoting the identity matrix for subject i who
has been measured n; times. Of course, we have completely discarded the
fact that repeated measures within the same subunit (i.e. a given subject in
our case) might be positively correlated. We could also constraint V; such as
to include a first-order auto-regressive process, whereby correlation between
consecutive measurements decrease as the time between two measurements
increases. In all cases, we always assume a symmetric, definite positive
covariance matrix, and we use a single regression model for each subject.



In another approach, we would prefer to account for the possible differ-
ence between both the intercept and slope of each subject under investiga-
tion. In this latter scheme, the outcome is still assumed to be of the form
Yi; = /éiO + Bz‘ltij + e, with ; ~ N(0,0;), but now we shall view our set
of subjects as a random sample taken from a larger population. Therefore,
the subject-specific regression coefficients BZ = (Bio, Bil)’ are random sam-
ples themselves, and we can postulate that they are drawn from a gaussian
distribution of regression coefficients. Our last model can be rewritten as

Yij = (Bo + bio) + (B1 + bi)tpi + €ij, (1.5)

with B0 = 8o + bio and Bi1 = B1 + bi1. The population-averaged profile
remains linear, with intercept and slope §y and (1, although we also have
subject-specific profile.

In its general formulation, the GLMM takes the form

b~ N(0,D),

where D stands for the n x n covariance matrix for the random effect.
The fixed part of the model, X;3, let us assess the mean profile, i.e. the
population-averaged evolution, while the random effects contained in b; al-
low for estimable variation of subject-specific profiles.

For inference, tests are based on on the marginal distribution for the
response Y;. Giving the marginal density function

fili) = / fiCui | bi)  (bi) db.

it can be shown that it is the density function of an n;-dimensional normal
distribution with mean X;3 and covariance matrix V; = Z;DZ! + o;.

Since the mixed model is defined through the distribution of both the
fixed effects, f;(y; | b;) and the random ones, f(b;), it is called the hierarchical
formulation of the LMM, while the preceding marginal normal distribution
corresponds to the marginal formulation of the LMM. As underlined by
Molenberghs & Verbeke these models are not strictly equivalent as different
random-effects models can induce the same marginal distribution. As an
example, consider the case where every subject is measured twice (n; = 2).
Assume that the random-effects structure is confined to a random intercept
(b; is thus a scalar), and that the residual error structure is defined by
¥ = ¥ = diag(o?,03) (Model I). The resulting marginal covariance matrix
is then:

Vo= <}>(d>(11>+<? fg)‘(dtf% di@)' (18)



If on the contrary we consider both a random intercept and a random slope
for the random-effects, we have b; = (bo;, b1;)’, mutually uncorrelated (but
not necessarily independent!). The resiudal error structure is ¥; = ¥ =
02Iy. This is what Molenberghs & Verbeke called Model II. The resulting
covariance matrix is now:

v oo (10 di 0 L1, (o8 0
- 11 0 do 0 1 0 o2
. d1—|-0'2 dq
o < d1 d1 —|—d2+0‘2 > ) (1.9)

Parametrization 1.8 and 1.9, which belong to thwo different hierarchical
model, leads to the same marginal model, with d; = d, dy = a% — 0% and
0?2 = o2. Furthermore, it should be noted that some marginal models are not
necessarily implied by a mixed model. Considering a model with compound
symmetry: if the within-subject correlation is positive (v > 0), we have a
mixed model with random intercept b; ~ N(0,v) and uncorrelated errors
with common variance o2 (because of compound symmetry hypothesis).

However, this does not hold anymore if v < 0.

1.2.2 Estimation and inference for the Marginal Model

Estimation of the parameters of the LMM is done via maximum likelihhod
techniques, based on the marginal model which is multivariate normal with
mean X;(3 and covariance Vj(a) = Z;DZ] + %;, for subject i. Assuming
independence between subjects, the likelihood is:

N
0oy = [Jem) Vi) 2
=1
X exp Hm CXBV N )Y - X8 (110)

Estimation of §' = (#’,a’) which requires the joint maximization of 1.10
with respect to all elements of 6 involves numerical algorithm.
Conditionally on «, the MLE of 3 is found to be [Laird and Ware, 1982]:

N -1 N
Bla) = (ZX{WZ-Xl) > X{wy;, (1.11)

i=1 i=1

where W, = Vi_1 = (Z;DZ! + ¥;)~L. Usually, « is unknown and need to be
estimated too. An M-Estimator can be used although common practice is
oriented toward the use of a restricted MLE, the so-called REML [Harville,
1974]: this allows to estimate a without having to estimate first the fixed
part of the model held in .



For inference purpose, of course, we are much interested in 3 as fixed
effects describe the average evolution. Conditionally on «, the MLE of ( is
given by 1.11, which is normally distributed with mean given by

N
E [5(04)] = <Z Xz{WiXi> Y X[WE[Y;] = 3, (1.12)
i=1 =1

and covariance

N -1
(Z X{Win)
=1

N
X <Z X{WiVar[mWiXi>

=1

N —1
x(ZX{Wi)Q»)
=1
N -1
= (ZX{WiXi) . (1.13)
=1

This relation holds provided that the mean and covariance has been correctly
specified, i.e. E(Y;) = X;6 and Var(Y;) = V; = Z,DZ] + %,;. Hypothesis
testing regarding 3 components can be done using Wald test.

Il should be emphasized that Wald tests are based on standard errors
computed by replacing « in 1.13 by its ML or REML estimate. Therefore,
they underestimate the true variability for B It is the reason why we don’t
rely on normal or x? distribution anymore but use a t or F distribution
instead. In these latter cases, the denominator degree of freedom has to be
estimated from the data. One commonly uses the so-called Satterthwaite-
type approximations [Satterthwaite, 1941]. Approximate p-value can be
computed and are close to the ones obtained with classical MLE because
degrees of freedom are large enough to yield reliable estimation. Recall that
longitudinal data bring several independent information mediated by differ-
ent subjects which prove to be sufficient for correct inference in this case.
This is very different from a crossed random-effects design, where subjects
are crossed with items for instance, which in this case yield very different
p-value according the method we choose.

Another point of interest lies in the fact that standard errors are valid
only if the mean and covariance are correctly specified, as stated above. Since
it is often difficult to assess whether the covariance matrix has been correctly
specified, we often prefer to rely on the so-called “sandwich” estimator given
in 1.13 (the first right-member expression, indeed). These robust, or em-
pirical standard errors are computed using an estimate of Var(Y;) given by

Var {B(a)}
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(i —Xiﬁ)(yi - X; B)’ . These estimators are consistent provided the mean and
variance arehas been correctly specified. The interested reader is referred to
classical GEE theory for further development on these computation [Liang
and Zeger, 1986].

1.2.3 Inference for the random effects

When we have estimated the systematic part of the model, we often are
interested in estimating random-effects b; as well. Indeed, random-effects
reflect variation between subject-specific profiles around the overall mean
profile. They can be considered like residuals, and as such can be used to
detect outlyiers.

For this purpose, it is no longer sufficient to rely on the marginal model
N (X;3,V;) and one has to resort to one of tow hierarchical formulation
provided in 1.8 and 1.9. This assumption proved to be sufficient in the case
where between-subjects variance is larger than within-subject variance.

Because the subject-specific parameters b; are random variates, Bayesian
techniques should be used [Gelman et al., 1995]. Conditional on b;, Y; fol-
lows a multivariate normal distribution with mean vector X;3 + Z;b; and
with covariance matrix ;. One can show that, conditionally on Y; = y;,
b; follows a multivariate normal posterior distribution with mean b;(f) =
DZ!V;  a)(y; — X;8). This expression is used to estimate b;. Its covariance
estimator is

N -1
Var[b;(0)] = DZ/{ VL — V7L, <Z X{Vi_lXZ) XVt ZD.
i=1
(1.14)
The estimator given by 1.14 underestimates the variability in b;(0) — b;
because it does not take into account the variation of b;. Therefore, we
ususally base inference for b; on [Laird and Ware, 1982]:

Var[b;(0) — b;] = D — Var[b;(0)] (1.15)

In practice, the unknown parameters 6 and « in 1.14 and 1.15 are re-
placed by their MLE or REML estimates. The resulting estimates for the
b; are called “Empirical Bayes” (EB) estimates and will be denoted by bi.
Again, 1.14 and 1.15 underestimate the true variability in the estimated bi
because they do not account for the variability introduced by replacing the
unknown parameters 6 by its estimate. As for the fixed effects, inference is
therefore based on approximate t or F-tests, rather than on Wald tests.

From 1.15, it follows that for any linear combination Ab; of the random
effects, Var(XN'b;) < Var(Nb;) which means that EB estimates show less
variance than actually present in the random-effects population. This is
known as a shrinkage effect. Shrinkage is also seen in the prediction y; =

11



XiB + Zil;i of the ith profile, which can be rewritten as y; = EinlﬁA +
[In, — EiVi_l]yi. Therefore, g; can be interpreted as a weighted average of
the population-averaged profile Xiﬁ and the observed data y;, with weights
ZiVi_l and I, —ZiVi_l. Severe shrinkage is to be expected when the residual
variability is large in comparison to the between-subject variability (i.e. the
random effects).

1.3 An introduction to the Marginal Model

1.3.1 Analyzing 2-way contingency tables

Following the notation introduced by Molenberghs & Verbeke, we will con-
sider a contingency table whereby ordinary multinomial cell counts and their
cumulative counterparts are defined as

AT

gr

{1 if Vi, =i and Yo, = 7,

0 otherwise,
and

(1.16)

otherwise.

1 if Y1, <idand Ys <7,
Zijr =

Here, the subsript 7 indexes the rth individual. The corresponding proba-
bilities are thus defined as yj; = Pr(Z};,. = 1) and p;; = Pr(Z;;, = 1).
Based on the Multivariate Logistic Model [Cullagh and Nelder, 1989,
whereby the vector link function is expressed in terms of the joint proba-
bilities and allows to model marginal means in terms of base-line category,
adjacent category logits, continuation-ratio logits or cumulative logits, we
will consider two kind of models widely used in the case of association study.
First, in the case of I x J tables, Goodman’s Local Association Model, also

called the RC model, considers log local cross-ratios of the form

* *
o — 1 [ Hatlirti+t
1y * * '
Hij+1Miy1

It includes main effects together with parameters describing the association
structure. For instance, from ,u;f‘j = aiﬁje‘z”\i”f, which is the closed form for
the joint cell probabilities, we can derive the local cross-ratios In Hfj = o(Ni—
Ai+1)(Vj — Vj41). This model can be extended to include additive effects on
the association and is known as the R+C+RC model [Goodman, 1981].
Second, Dale’s Marginal Model is a marginal model for ordinal variable
that are modeled through marginal cumulative logits and global cross-ratios
[Dale, 1986]. Cumulative logits are expressed as

i = logit [Pr(Y1 < 1)] = In(uy) — In(1 — piy)
m2; = logit [Pr(Yz < 1)] = In(ur;) — In(1 — pr )

12



and global cross-ratios used to define the joint probabilities are computed

as
Insy; = In (Mz‘j(l — K1j — Mg + Mz‘j)) .
(pig = priz) (perjprig)
Note, however, that local cross-ratios might be used instead of global ones if
required. For the particular case of binary variables, both lead to the same
results. This model which can be expressed in the following way

Invi; = ¢+ p1i + p2j + 013025

includes a constant association parameter (¢), both row and colum effects
as well as interactions between the rows and columns. As such, this model
resembles Goodman’s R+C+RC model. Model fitting is done via Newton-
Raphson or Fisher scoring 2.

The following examples shall be used to illustrate some of the previously
discussed ideas. Further developments will be provided in the next chapter.

British Occupational Status Study

This study which was already analysed in Goodman [1979] comprises a sam-
ple of subjects cross-classified according to their father’s occupational status
and their own status membership. Data are available in the R package gnm
as occupationalStatus and are reproduced in Tab. 1.1. We shall notice,
however, that Molenberghs & Verbeke’s data considers 7 categories only
while our R dataset includes 8 categories. We could aggregate row and col-
umn 5 and 6 in our dataset to match that of Molenberghs & Verbeke, but
the file occupationalStatus.dat should fix the problem.

> occupationalStatus <- matrix(scan("occupationalStatus.dat", sep = ","),

+ nr = 7)
> dimnames (occupationalStatus) <- c(list(1:7), 1ist(1:7))

1 2 3 4 ) 6
50 19 26 8§ 18 6
16 40 34 18 31 8
12 35 65 66 123 23 2
11 20 58 110 223 64 32
14 36 114 185 714 258 189
0 6 19 40 179 143 71
0 3 14 32 141 91 106

— W N~

N OO W N

Table 1.1: British Occupational Study. Cross-classification of male sample
according to each subject’s occupational status category (column) and his
father’s occupational category (row).
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Let’s apply the preceding models.
To fit an RC model, we need the VGAM package which provides the grc
function. First, we can specify a constant association in the following way:

> library(VGAM)

> options(contrasts = c("contr.treatment", "contr.poly"))

> BOSS.rc <- grc(occupationalStatus, Rank = 1)

> BOSS.rc

Call:

rrvglm(formula = as.formula(str2), family = poissonff, data = .grc.df,

control = myrrcontrol, constraints = cms)
Coefficients:

Residual Deviance: 75.58977
Log-likelihood: -164.9052

We find a residual deviance (x2(25)) of 75.59, indicating that this model
does not provide a very good fit. If we allow for interaction between rows
and columns, by specifying Rank=2, residual deviance now is 36.05 with 16
degrees of freedom.

With Dale’s model, we need to resort to

The Caithness Data

In another study, Goodman [1981] uses an association model for two-way
contingency tables with ordered categories (eye and hair color of 5387 chil-
dren, see Tab. 1.2). Data also are available in the package MASS as caith.

fair red medium dark black

blue 326 38 241 110 3
light 688 116 584 188 4
medium 343 84 909 412 26
dark 98 48 403 681 85

Table 1.2: Caithness Data. Eye color (rows) and hair color (columns) of
5387 children in Caithness.

Other useful graphical summary for such a table are provided by mosaic
plots, which divide the plotting surface recursively according to the propor-
tions of each factor in turn. The following snippet is taken from Venables
and Ripley [2002].

> caithl <- as.matrix(caith)
> names (dimnames (caithl)) <- c("eyes", "hair")
> mosaicplot(caithl, color = T, main = "")
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Before applying a marginal model such as the one decribed in the pre-
ceding section, let’s take a look at the simplest model of nominal association
[see e.g. Venables and Ripley, 2002, p. 326].

> corresp(caith)

First canonical correlation(s): 0.4463684

Row scores:
blue light medium dark
-0.89679252 -0.98731818 0.07530627 1.57434710

Column scores:
fair red medium dark black
-1.21871379 -0.52257500 -0.09414671 1.31888486 2.45176017

Raw and column scores are scaled by p, the first canonical correlation,
and are (by construction) maximally correlated. Indeed, if we consider an
r % ¢ table of counts () and choose R and C as matrices of indicators for
the rows and columns, such that RT’C = N, we can apply a singular value
decomposition to their correlation matrix

Xi; = nij/n— (ni/n)(n.j/n) _ nij —nric;
ij = =

(ni /) (/) NG
where 7; = n;./n and ¢; = n.j/n) are the proportions in each row and
column. According to Venables and Ripley [2002], let D, and D. be the
diagonal matrices of r and ¢. Then, correspondence analysis corresponds to
selecting the first singular value and left and right singular vectors of X;;
and rescaling by D, /2 and D, 12,
The package ca provides more detailed summary and useful graphical

maps of row/columns scores, which I find more pretty than the biplot
function of MASS (see Fig. 1.1, right).

> library(ca)
> ca(caith)

Principal inertias (eigenvalues):

1 2 3
Value 0.199245 0.030087 0.000859
Percentage 86.56%  13.07%  0.37%

Rows:

blue light medium dark
Mass 0.133284 0.293299 0.329311 0.244106
ChiDist 0.437855 0.450620 0.247359 0.715398
Inertia 0.025553 0.059557 0.020149 0.124932
Dim. 1 -0.896793 -0.987318 0.075306 1.574347
Dim. 2 0.953623 0.510004 -1.412478 0.772036
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Figure 1.1: Correspondence analysis of Caithness Data.

Columns:
fair red medium dark black
Mass 0.270095 0.053091 0.396696 0.258214 0.021905
ChiDist 0.571235 0.265854 0.212526 0.597901 1.132193
Inertia 0.088134 0.003752 0.017918 0.092308 0.028079
Dim. 1 -1.218714 -0.522575 -0.094147 1.318885 2.451760
Dim. 2 1.002243 0.278336 -1.200909 0.599292 1.651357

> plot(ca(caith))

In that case, we found again row and column scores reported on the
Dim. 1 row in the summary output. There are obviously the same as
those computed with the corresp function.

Going back to our marginal model, we may first fit a simple model which
assumes independance between both responses but Goodman has shown that
this does not provide a good fit. We try ...

1.3.2 Analyzing 3-way contingency tables

Dale’s Model has been extended to tables with arbitrary dimensions. Details
can be found in Molenberghs and Lesaffre [1994]. Here is a brief outline of
the basics of multi-way analysis: let Y7, Y2 and Y3 be our three variables
with I, J and K levels respectively. Now, we can define the cumulative
three-way probabilities as p;j, (1 = 1,...,1, 7 =1,...,J , k=1,...,K).
Marginal paramaters are defined as

mi = logit[Pr(Y1 <1)] = In(uigx) — In(l — pisx),
n2j = logit[Pr(Ye < j)] = In(urjx) — In(1 — prjk),
nsk = logit[Pr(Ys < k)] = In(prk) — In(1 — prgk). (1.17)
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while pairwise association parameters are defined as

In pijrc (1 — prjx — pigr + pijr)

Inyro;; = ,
“ (Higr — pijr ) (BIjK — MijK)
(1 — — ,
Iz, = In Lk ( Lrgk — igk + [igk) ’
(tigr — tagr) (1K — Higk)
. 1 _ _ . _|_ .
s, = In prjk(1 = pirge — prjr + k) (1.18)

(rgk — prje) (K — frjk)

1.4 Likelihood-based Marginal Models

We will here focus our attention on the Bahadur Model and extend the
Dale’s Model based on global odds ratio. These models not only allow us to
study association structures, as before, but also permit to analyse the joint
probability of a number of events occurring at two consecutive measure-
ments. Furthermore, they form the basis of other methods not encompassed
by the likelihood approach and which shall be described later on.

1.4.1 The Bahadur Model

In the case of binary data, the model proposed by Bahadur [1961], in the
context of clustered data, aims at describing the probability of observing a
positive response taking into account the within cluster correlation.

In its elementary form, the Bahadur’s model considers that the marginal
distribution Y;; observed for measurement j on subject ¢ can be considered
as a Bernoulli experiment, such that E(Y;;) = Pr(Y;; = 1) = my;. First, we
start by conditionning expectation upon any covariates X;, and the associ-
ation is simply described by the pairwise probability

Pr(}/jijl = 1a}/ij2 = 1) = E(Yvijlygjé) = Tij1ja2-

In other words, the “sucess probability” of two measurements from the same
subject can be modeled in terms of marginal probabilities, the m;;, together
with the marginal correlation coefficient which can be expressed as:

_ Tijrje — Tij1 Tigo
cort(Yiiy, Yiin) = Piivia = 1.19
( ij1 ’sz) Pijije [Wijl (1 — 7Tij1)7rij2(1 — 71'12)]1/ ( )

The pairwise probability m;j, ;, (i.e. the second moment) can be shown
to be

Tijuja = TijiMije + Pijiga Mgy (1 = mijy )iy (1 — migy) ]2 (1.20)

In addition to the first two moments, Bahadur considers third and higher
order correlation coefficients, p;j, j,, Pijijajss - - - » Pi12..m;» thus completely spec-
ifying the joint distribution. With this approach, the general Bahadur model
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takes the form f(y) = fi(vyi)c(yi), where

filyi) = Hwy” ot )1 Vi

W) = L4 Y PipCin€in T Y, Pijiags€iCifaCiss
J1<j2 J1<j2<J3
+ 0+ pit2.n€in€i2 - - €in,- (1.21)

We see that the probability mass function, f(y), is nothing else than the
product of an independence model (fi(y;)) and a correction factor (c(y;)),
which can be used to account for over-dispersion.

With (exchangeably) clustered data, the Bahadur model can be extended
quite naturally. Details can be found in Molenberghs & Verbeke, but it can
be shown that knowing Z; = Z Y;;, the number of successes within a
unit, with realized value z;, is sufﬁment This leads to the following model:

fl(y’b> = Ffl(l —_ ﬂ-i)nifzi

c(yi) 1+ sz Z < ) (n; B j’) (=) A2 (1.22)

s=0

with \; = y/m;/(1 — ;). The probability mass function of Z; is then

1

)= (") 1),

Zq
If three and higher order correlations are assumed to be zero, this sim-
plifies further to

f(Zz) = f(zl | ﬂ-ivpi(2),ni) — <:l> 71'?(1 _ Wi)ni_zi

)

n; —z; iy Z3 1*71'1‘
><|:1+pl-(2){< 9 )1_%—21‘(712‘—23‘)4-(2) . }:| (1.23)

This formulation is more pretty than the Dale’s model, which has no
closed form (i.e. free of integrals), but note that correlation between two
responses are constrained by the fact that higher order correlations have
been removed. Such a restriction on correlation parameters is discussed by
Molenberghs & Verbeke (page 89).

The marginal parameters m; and p;(2) have to be modelled using a com-
posite link. For m;, the logistic function arises naturally as Y;; are binary,
while for p;) a Fisher’s z-transform has to be applied. This leads to the
following generalized linear regression:

In (1”#)) = X6, (1.24)



If we denote the log-likelihood contribution of the ith unit by
b= lnf(zz | Ty Pi(2)5 ni)7

the MLE of 3, 3, is computed by nulling the score equations which are

N
UB) = XUT)) "L (1.25)
=1
where
on; on;
T = O _ %11 %12
T P90, Oni1 Onia
v Opi2)  Opi(2)
1
_ ( i (1—m;) (2) )
0 (I=pi2))(1+ps(2))
and

e
oL, I
L;,= = ! .

90, ( oL, )

api(Q)

Here, ©; = ( pm ) is the set of natural parameters. Resolution of U(3) =
i(2)
0 requires numerical algorithm, such as Newton-Raphson.

1.4.2 Fully-specified Marginal Models
1.4.3 The Multivariate Probit Model

1.5 The GEE approach

1.5.1 Advantages of the GEE over likelihood-based approaches

Though full likelihood approaches allow one to draw inference about the pa-
rameters of interest, together with the joint probabilities (as for the Bahadur
Model), computational complexity increase with the number of repeated
measurements while choosing the right full distributional specification is
never very easy. When one is only interested in the marginal parameter and
pairwise associations, quasi-likelihood methods provide an alternative way
to model such correlated data. Mean response is modelled as a parametric
function of covariates and variance is viewed as a function of the mean.

There is another alternative for studying both the marginal profile and
the association structure: the Generalized Estimating Equations, first pro-
posed by Liang and Zeger [1986].
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1.5.2 Theoretical framework

First, we note that the score equations for a multivariate marginal normal
model Y; ~ N(X;3,V;) can be expressed as

N
S XUAPRAY) T yi — Xy, beta) = 0, (1.26)
=1

with V; being the marginal covariance matrix. This covariance matrix has
been decomposed such that

V= APR;AL (1.27)

where A; is a diagonal matrix of variances and R; is the marginal correlation
matrix.

1.5.3 Other GEE methods
1.6 Conditional Model

1.6.1 Transition Models

Transition models are a specific class of conditional models. A measurement
Y;; is modelled as a function of the previous outcomes or past events, denoted
hij = (Yi1,...,Yij—1) (see Diggle et al. [2002] for further description of this
model). Such a model can be rewritten as a regression model with outcome
Y;; and predictors h;j, or expressing the error term ¢;; as a function of the
past error terms. This sounds like the time series approach. Note that
Markov models also are subsumed in this general approach.

A stationary first-order autoregressive model for continuous data can be
formulated in the following way (here, the order relates to the number of
previous measurements that are considered to influence the current one):

Yii = B+ ea, (1.28)
Y:;: = l’;lﬁ + OéY%}jfl + €i1- (1.29)
Such a model produces a marginal multivariate normal model with AR(1)
covariance matrix, and is convenient for equally spaced outcomes. This can

be shown by noting that Var(Y;;) = o2 and cov(Yy;, Yijr) = o' ~Ilo? | if we
assume that £;1 ~ N(0,0%) and &;; ~ N(0,0%(1 — a?)).
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Chapter 2

The Toenail data

2.1 The data

The data were obtained from a randomized, double-blind, parallel group,
multicenter study for the comparison of two oral treatments (in what fol-
lows coded as A and B) for toenail dermatophyte onychomycosis (TDO),
described in full detail by Backer et al. [1996]. TDO is a common toenail
infection, difficult to treat, affectinf more than 2 out of 100 persons. Anti-
fungal compounds, classically used for treatment of TDO, need to be taken
until the whole nail has grown out healthy. The development of new com-
pounds, however, has reduced the treatment duration to 3 months. The aim
at the present study was to compare the efficacy and safety of 12 weeks of
continuous therapy with treatment A or with treatment B.

In total, 2 x 189 patients were randomized, distributed over 36 centers.
Subjects were followed during 12 weeks (3 months) of treatment and followed
further, up to a total of 48 weeks (12 months). Measurements were taken
at baseline, every month during treatment, and every 3 months afterwards,
resulting in a maximum of 7 measurements per subject. At the firts occasion,
the treating physician indicates one of the affected toenails as the target nail,
the nail which will be followed over time. The analysis will be restricted to
only those patients for which the target nail was one of the two big toenails.
This reduces the sample under consideration to 146 and 148 subjects, in
group A and group B, respectively.

One of the responses of interest was the unaffected nail length, measured
from the nail bed to the infected part of the nail, which is always at the free
end of the nail, expressed in mm. This outcome has been extensively studied
in the other textbook dealing with continuous measurements data (Verbeke
and Molenberghs, 2000). Another important outcome in this study was the
severity of the infection, coded as 0 (not severe) or 1 (severe). The question of
interest was whether the percentage of severe infection decreased over time,
and whether that evolution was different for the two treatment groups.
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Due to a variety of reasons, the outcome has been measured at all 7
scheduled time points, for only 224 (76%) out of the 298 participants. It
should be noted thta the occurence of missingness is similar in both treat-
ment groups.

2.2 The basics

First, we load the data (stored as a csv file) and recode some of the variables,
for clarity purpose:

toenail <- toenail.raw <- read.csv('"dataset/toenail02.csv", header = TRUE,
sep = ",")

toenail$idnum <- as.factor (toenail$idnum)

toenail$idnew <- as.factor (toenail$idnew)

toenail$treatn <- as.factor(toenail$treatn)

levels(toenail$treatn) <- LETTERS[1:2]

toenail$time <- factor(toenail$time, ordered = TRUE)

vV V.V V.V + VvV

The variable y is our response variable (presence or absence of toenail
dermatophyte onychomycosis, TDO), while treatn and time stand for the
treatment group and follow-up timeline, respectively. Let’s check the struc-
ture and provide a very short summary of the data:

> head(toenail)

idnum time treatn y idnew
1 1 0 B1 1
2 1 1 B1 1
3 1 2 B1 1
4 1 3 B O 1
5 1 6 B O 1
6 1 9 BO 1
> summary(toenail)

idnum time treatn vy idnew

1 : 7 0 :294 A:937 Min. :0.0000 1 : 7
3 7 1 :288 B:970 1st Qu.:0.0000 3 7
4 7 2 :283 Median :0.0000 4 7
6 7 3 :272 Mean :0.2139 5 7
7 7 6 :263 3rd Qu.:0.0000 6 7
9 : 7 9 :243 Max. :1.0000 7 : 7
(Other):1865  12:264 (Other) : 1865

By simply looking at the raw proportion, we can see that there seems to
be little difference between treatment A and treatment B.

> with(toenail, table(treatn, y))

y
treatn 0 1

A 723 214
B 776 194
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We shall confirm this intuition by examining row and column profiles,
which can be computed as follows:

> trt.tab <- with(toenail, table(treatn, y))

> row.pct <- sweep(trt.tab, 1, apply(trt.tab, 1, sum), "/")
> col.pct <- sweep(trt.tab, 2, apply(trt.tab, 2, sum), "/")
> round(row.pct, 2)

y
treatn 0

A 0.77 0.23
B 0.80 0.20

[y

> round(col.pct, 2)

y
treatn 0 1

A 0.48 0.52
B 0.52 0.48

However, a more useful summary would consist in summarizing the mean
result observed per condition, i.e. including time variable, which can be done
as follow (using the fact that for a binary variable, the mean equals the
empirical frequency):

> with(toenail, round(tapply(y, list(treatn, time), mean), 2))

0 1 2 3 6 9 12
0.22 0.11 0.09 0.11
0.21 0.06 0.06 0.05

(¢}
N

A 0.37 0.35 0.3
B 0.37 0.33 0.2

[}

There, we see that the frequency of severe infection evolves over time,
compared to the baseline condition (time=0). The decline of TDO frequency
might be more apparent with the help of a simple figure (Fig. 2.1).
> with(toenail, interaction.plot(time, treatn, y, ylim = c(0, 0.5),

+ ylab = "Frequency", legend = FALSE, main = "Raw data"))

> legend("topright", paste("Treatment", levels(toenail$treatn)),
+ 1ty = 1:2)

Now, we can start with a simple logistic regression model, discarding
the correlated structure. We will thus express the logit of the proportion

of positive response as a linear combination of the predictors, including the
2nd order interaction term. This model can be expressed as

logit(m;) = o + S1Ti + Bots + B3Tits, Y ~ B(m)

where we assume that individual responses Y; follow a Bernoulli distribution
and T and t represent the treatment and time variables. Here, we also
assume specific linear time trends for both treatment groups. The intercept
Bo would represent the mean baseline response.

This can be done as follow with R:

> toenail.glm <- glm(y ~ treatn * time, data = toenail.raw, family = binomial)
> summary(toenail.glm)
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Figure 2.1: The Toenail data. Mean responses in each condition.

Call:
glm(formula = y ~ treatn * time, family = binomial, data = toenail.raw)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.9608 -0.7769 -0.4891 -0.2331 2.6905

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.55706 0.10904 -5.109 3.24e-07 **x*
treatn 0.02358 0.15648 0.151 0.880
time -0.17693 0.02456 -7.205 5.82e-13 x**x
treatn:time -0.07798 0.03944 -1.977 0.048 =

Signif. codes: 0 'sx*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1980.0 on 1906 degrees of freedom

Residual deviance: 1811.7 on 1903 degrees of freedom

AIC: 1819.7

Number of Fisher Scoring iterations: 5

There is a significant interaction (p = 0.048) which means that trends
might be different in the two groups. We get some clues about the data, but
we obviously are on the wrong way since we have not taken into account the
multiple responses per subject. As can be seen from the output, we have
considered 1907 independant observations (residual degrees of freedom + 1).
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Figure 2.2: The Toenail data. Diagnostic plots for the logistic regression.

> par(mfrow = c(2, 2))
> plot(toenail.glm, cex

0.8)

Some useful plots for model diagnostics are shown in Figure 2.2. From
left tor right, and from top to bottom, it shows: (a) residuals vs. fitted
values, (b) a normal Q-Q plot for standardized residuals, (c) standardized
residuals vs. fitted values, and (d) leverage effect for each observation.

As we already pointed out, using a logit link rather than a probit doe
not make a great difference, except for extreme values. Indeed, the following
piece of code, adapted from Faraway [2006], shows how the choice of the
link function affects the probability distribution. For clarity purpose, we
use a reduced model, including only the time dependent variable. We thus
fit the data assuming binomially distributed errors, with logit, probit and
complementary log-log. The logit function is provided by the VGAM package.

toenail.glml <- glm(y
toenail.glmp <- glm(y
toenail.glmc <- glm(y ~

time,

~ time,

time,

data
data
data

pl <- logit(toenail.glml$coef[1] +
inverse = TRUE)

>
>
>
> x <- seq(0, 12, 0.2)
>
+
>

pp <- pnorm(toenail.glmp$coef[1] +

= toenail.raw, family
= toenail.raw, family
= toenail.raw, family

binomial(logit))
binomial (probit))
binomial (cloglog))

toenail.glml$coef[2] * x,

toenail.glmp$coef[2] * x)
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Figure 2.3: The Toenail data. (Left) Logistic regression with three different
link functions. (Right) Relative ratio between the predicted probabilities
according to selected models.

> pc <- 1 - exp(-exp((toenail.glmc$coef[1] + toenail.glmc$coef[2] *
+ x)))

We then plot the predicted probability of a positive response depending
on time value.
> plot(x, pl, type = "1", ylab = "Probability", xlab = "Time",
+ main = "Model fits")
> lines(x, pp, 1ty = 2, col = "blue")
> lines(x, pc, 1ty = 5, col = "red")
> legend("topright", c("Logit", "Probit", "Log"), lty = c(1, 2,
+ 5), col = c("black", "blue", "red"))

As can be seen, there is very littele difference between the three fits. To
show how the choice of link function affects the tails of the distribution, we
can plot the relative ratio between each link function for the varying time
(Fig. 2.3).
> op <- par(mfrow = c(1, 2), mar = c(5, 4, 4, 1))
> matplot(x, cbind(pp/pl, (1 - pp)/(1 - pl)), type = "1", xlab = "Time",

+ ylab = "Ratio", main = "Probit/Logit", col = c("black", "blue"))
> matplot (x, cbind(pc/pl, (1 - pc)/(1 - pl)), type = "1", xlab = "Time",
+ ylab = "Ratio", main = "Log/Logit", col = c("black", "red"))

> par(op)

Difference between model fits can be found along all the domain of the
dependent variable. However, they are more important for the lowest and
highest values of time. Indeed, as the underlying distributions differ in their
respective tail, for instance the standard normal and the logistic, it should

not be too surprising.
Finally, we can compare the deviance of these three models:

> toenail.glml$deviance
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[1] 1818.263
> toenail.glmp$deviance
[1] 1821.744
> toenail.glmc$deviance

[1] 1816.785

Very little variation are observed between these models suggesting that the
logit link provides sufficient information.

2.3 DMarginal model

The following model will be used throughout this section:

.
log(——2—) = Bo + 51 Ti + Patij + BsTiti

1 —
and we assume that Y;; ~ B(m;;), that is the outcome follow a Bernoulli
distribution with parameter p = m;;. The variable t;; represent the jth
measurement taken from subject .
In order to fit a GEE model, we need to load the gee library. We can
formulate the model as is within R except for the repeated statement which
has to be reported in the id parameter.

> toenail.gee <- gee(y ~ treatn * time, id = idnum, data = toenail.raw,
+ family = binomial, scale.fix = TRUE)

(Intercept) treatn time treatn:time
-0.55705808 0.02357666 -0.17692959 -0.07797568

Here, we use the option scale.fix=TRUE to allow comparison with the
SAS output, but there is no really need to constrain the scale to be 1. We
also use an independance working correlation matrix (the default in R). We
can check that correlated data have been taken into account, unlike in the
previous logistic approach:

> toenail.gee

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent
Call:

gee(formula = y ~ treatn * time, id = idnum, data = toenail.raw,
family = binomial, scale.fix = TRUE)

Number of observations : 1907
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Maximum cluster size 7

Coefficients:
(Intercept) treatn time treatn:time
-0.55705808 0.02357666 -0.17692959 -0.07797568

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation[1:4,1:4]
[,11 [,2] [,3] [,4]
[1,] 1 0 0 0

o O O
O O =

0 0
1 0
0 1

Returned Error Value:

[11 0

Of course, displaying the working correlation is not very useful since this
the identity matrix because we specify an independance hypothesis. We are
now working with correlated measurements and the maximum cluster size is
7. More précisely, we can compute the number of independant observations:
> length(unique (toenail$idnum))

[1] 294

It could be useful to check the minimum cluster size, which is
> min(with(toenail, table(y, idnum))) + 1

[1] 1

> sum(table(toenail$idnum) == 1)

[11 5

Thus, the number of measurements per subject varies from 1 to 7, and there
are in fact 5 individuals that have only one measurement. This explains why
we don’t get perfect a correspondance between the number of measurements
(1907) and the number of clusters (294). We can identify the individual with
only one measurement, because we might want to remove them later on:

> names (table(toenail$idnum) [table(toenail$idnum) == 1])
[1] 45" m48" 3" "99" 377"
> toenail [toenail$idnum == 45, ]

idnum time treatn y idnew

207 45 0 A1 34

For instance, subject whose id is 45 has been measured only at time 0. This
subject has perhabs leave after the beginning the study.

We obtain quite comparable results as those displayed by Molenberghs
& Verbeke (pp. 206-212):
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> summary(toenail.gee)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent
Call:

gee(formula = y ~ treatn * time, id = idnum, data = toenail.raw,
family = binomial, scale.fix = TRUE)

Summary of Residuals:
Min 1Q Median 3Q Max
-0.36970527 -0.26051531 -0.11275408 -0.02679591 0.97320409

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.55705808 0.10903934 -5.1087806 0.17133792 -3.25122476
treatn 0.02357666 0.15648046 0.1506684 0.25055984 0.09409591
time -0.17692959 0.02455777 -7.2046266 0.03016880 -5.86465399

treatn:time -0.07797568 0.03943713 -1.9772150 0.05459973 -1.42813317

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation

(,11 [,2]1 [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 0 0 0 0
[2,] 0 1 0 0 0 0 0
[3,] 0 0 1 0 0 0 0
(4,1 0 0 0 1 0 0 0
[5,] 0 0 0 0 1 0 0
[6,] 0 0 0 0 0 1 0
(7,1 0 0 0 0 0 0 1

First of all, we shall note that the initial estimates are comparable to those
found with the logistic regression. This is because initial estimates are
computed by fitting an ordinary logistic regression, ignoring the correla-
tion structure. R also computes two kinds of estimates for standard errors:
the first column displays the standard errors based on the assumption of
uncorrelated measurements. Obviously, these are the same as in the logistic
case since the first step in GEE fitting assumes independent observations.
The sandwich estimators are found under the column headed Robust S.E..
We can see that these empirical corrected SE are quite a bit larger than the
model-based ones: this implies that ignoring the correlation in these data
could lead to invalid conclusions. With the model-based SE, we would re-
port the treatment by time interaction as marginally significant (z = —1.977,
2*pnorm(-1.9772150) gives a p-value of 0.048), while using robust SE yields
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a different picture (z < 1.96). We can also see differences between both
model when inspecting the full asymptotic covariance matrices!:

> round(toenail.gee$naive.variance, 4)

(Intercept) treatn time treatn:time
(Intercept) 0.0119 -0.0119 -0.0018 0.0018
treatn -0.0119 0.0245 0.0018 -0.0041
time -0.0018 0.0018 0.0006 -0.0006
treatn:time 0.0018 -0.0041 -0.0006 0.0016

> round(toenail.gee$robust.variance, 4)

(Intercept) treatn time treatn:time
(Intercept) 0.0294 -0.0294 -0.0023 0.0023
treatn -0.0294 0.0628 0.0023 -0.0067
time -0.0023 0.0023 0.0009 -0.0009
treatn:time 0.0023 -0.0067 -0.0009 0.0030

Recall that the postulated variance matrix is used to get final estimates
of the regression coefficients. In the next phase of the analysis, we will
consider exchangeable and unstructured working assumptions. This is done
by using the option corstr="exchangeable" and corstr="unstructured"
when calling the gee function. In the case of the exchangeable structure, we
get

> toenail.gee.exch <- gee(y ~ treatn * time, id = idnum, data = toenail.raw,
+ family = binomial, scale.fix = TRUE, corstr = "exchangeable")

(Intercept) treatn time treatn:time
-0.55705808 0.02357666 -0.17692959 -0.07797568

> toenail.gee.exch$coefficients

(Intercept) treatn time treatn:time
-0.584063732 0.009965551 -0.177032576 -0.086677389

With the unstructured variance matrix, the results are quite similar:

> toenail.gee.unstr <- gee(y ~ treatn * time, id = idnum, data = toenail.raw,
+ family = binomial, scale.fix = TRUE, corstr = "unstructured")

(Intercept) treatn time treatn:time
-0.55705808 0.02357666 -0.17692959 -0.07797568

> toenail.gee.unstr$coefficients

(Intercept) treatn time treatn:time
-0.68976394 0.08281554 -0.14825606 -0.10430442

IR clearly produces shorter output than SAS, but sometimes we might only be interested
in a specific result, such as a p-value or a regression coefficient, and don’t need the rest
of the information. So, don’t forget to look at the structure of the working R object with
the str function, in order to be able to extract the specific piece of information you want.
It saves time. . .and paper when we produce a report like this one.
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Step 0 1 2 3

5o -0.5840 -0.5841 -0.5841 -0.5841
51 0.0144 0.0104 0.0100 0.0100
B2 -0.1771  -0.1770 -0.1770 -0.1770
03 -0.0861 -0.0867 -0.0867 -0.0867

Table 2.1: Estimates obtained in 3 iterations from an GEE model with
exchangeable correlation structure.

Before going more in details within these two models, we can see that the
estimates are quite different depending on the covariance structure we spec-
ify as initial guesses. Furthermore, the estimates differ from what has been
observed in the preceding case (independance assumption) and are now dif-
ferent from the initial conditions (computed as standard regression coeffi-
cients form a GLM). This is because several iterations are performed before
converging to stable estimates. We can check this by displaying the num-
ber of iterations needed to achieve convergence. For instance, with the first
model:

> toenail.gee.exch$iter

[1] 4

To get an idea of the values of the estimates at each step, we have to
add the option silent=FALSE:

> gee(y ~ treatn * time, id = idnum, data = toenail.raw, family = binomial,
+ scale.fix = TRUE, corstr = "exchangeable", silent = F)

The step by step estimates are reported in Tab. 2.1 (step 0 means starting
values).

Now, let’s look at each model separately. With the exchangeable hypoth-
esis, we assume that observations (ranging from 1 to 7) within a given cluster
correlate in the same manner with each other. The treatment by time inter-
action still is non-significant, and now the asymptotic variance-covariance
matrices are have changed to

> round(toenail.gee.exch$naive.variance, 4)

(Intercept) treatn time treatn:time

(Intercept) 0.0181 -0.0181 -2e-04 0.0002
treatn -0.0181 0.0349 2e-04 -0.0001
time -0.0002 0.0002 4e-04 -0.0004
treatn:time 0.0002 -0.0001 -4e-04 0.0013

> round(toenail.gee.exch$robust.variance, 4)

(Intercept) treatn time treatn:time
(Intercept) 0.0301 -0.0301 -0.0025 0.0025
treatn -0.0301 0.0680 0.0025 -0.0078
time -0.0025 0.0025 0.0010 -0.0010
treatn:time 0.0025 -0.0078 -0.0010 0.0032

31



Note, however, that these matrices are still far apart one from the other,
suggesting to switch to an unstructured covariance matrix. Indeed, with
such a large sample size but small cluster size, efficiency is questionable. If
we take a look at the exchangeable working correlation, we see that it is
estimated as

> toenail.gee.exch$working.correlation[1, 2]

[1] 0.4211848

We have already computed the coefficients (see Tab. 2.1, last column), and
they differ from the previous ones, as a result of the constraints imposed on
the correlation structure.

With the unstructured working assumptions, the parameters estimates
also differ from what was obtained earlier. Here is the whole output:

> summary(toenail.gee.unstr)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Unstructured

Call:
gee(formula = y ~ treatn * time, id = idnum, data = toenail.raw,
family = binomial, corstr = "unstructured", scale.fix = TRUE)

Summary of Residuals:
Min 1Q Median 3Q Max
-0.35275562 -0.24748530 -0.11669895 -0.02563883 0.97436117

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) -0.68976394 0.16694967 -4.1315681 0.16787094 -4.1088942
treatn 0.08281554 0.23608105 0.3507929 0.24304125 0.3407469
time -0.14825606 0.02748639 -5.3937997 0.02826793 -5.2446729

treatn:time -0.10430442 0.04541538 -2.2966758 0.05141970 -2.0284914

Estimated Scale Parameter: 1
Number of Iterations: 4

Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1.0000000 0.8626806 0.6718167 0.4742889 0.2330428 0.1464755 0.1016829
[2,] 0.8626806 1.0000000 0.7783627 0.5629794 0.2523393 0.2185336 0.1226081
[3,] 0.6718167 0.7783627 1.0000000 0.7293826 0.2615086 0.1987628 0.1515076
[4,] 0.4742889 0.5629794 0.7293826 1.0000000 0.3388481 0.2596779 0.1973358
[6,] 0.2330428 0.2523393 0.2615086 0.3388481 1.0000000 0.4590733 0.3776915
[6,] 0.1464755 0.2185336 0.1987628 0.2596779 0.4590733 1.0000000 0.6075596
[7,] 0.1016829 0.1226081 0.1515076 0.1973358 0.3776915 0.6075596 1.0000000
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One should notice that the treatment by time interaction is now signif-
icant, within both models, and the associated p-value can be computed, in
the case of the model-based result, as:

> 2 * pnorm(-2.2966758)

[1] 0.02163727

We might prefer to make use of the robust SE and z statistics, but if we
carefully look at the two sets of estimates, we would see that there is little
differences between the two. This is at variance with what was observed
in our last two models (independence and exchangeable assumptions). We
could check that our model specification isn’t too bad by again looking at
the working correlation matrices:

> round(toenail.gee.unstr$naive.variance, 4)

(Intercept) treatn time treatn:time
(Intercept) 0.0279 -0.0279 -0.0024 0.0024
treatn -0.0279 0.0557 0.0024 -0.0048
time -0.0024 0.0024 0.0008 -0.0008
treatn:time 0.0024 -0.0048 -0.0008 0.0021

> round(toenail.gee.unstr$robust.variance, 4)

(Intercept) treatn time treatn:time
(Intercept) 0.0282 -0.0282 -0.0022 0.0022
treatn -0.0282 0.0591 0.0022 -0.0058
time -0.0022 0.0022 0.0008 -0.0008
treatn:time 0.0022 -0.0058 -0.0008 0.0026

The robust matrix is very close to the naive one, which indicate that the
specifications we use to constrain the model are quite in agreement with
the observed data. However, one should not forget that no inference can
be made about this correlation structure. We may say that, within the
unstructured assumption, there seems to be a decrease of the correlation
between two consecutive measurements as the distance between them grows
up. That’s all.

Figure 2.4 (left) shows the fit provided by this latest model. As can
be seen, curves are much “smoother” than those of the raw data shown in
Fig. 2.1. Indeed, the negative slopes are smallest between 0 and 6, for both
treatments, than there were in the raw data. In other words, the observed
decrease in the frequency of toenail infections is higher than what would be
expected according to this model.

> interaction.plot(toenail$time, toenail$treatn, toenail.gee.unstr$fitted.values,
+ ylim = ¢(0, 0.5), legend = FALSE, main = "Fitted data", xlab = "time",

+ ylab = "Expected frequency")

> legend("topright", paste("Treatment", levels(toenail$treatn)),

+ 1ty = 1:2)

Residuals can be plotted as follows :
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Figure 2.4: The Toenail data. (Left) Expected mean responses in each
condition following an GEE fit with unstructured working covariance matrix.
(Right) Residuals of the fit.

> interaction.plot(toenail$time, toenail$treatn, toenail.gee.unstr$residuals,

+ legend = FALSE, main = "Fitted vs. observed data", xlab = "time",
+ ylab = "Residuals")

> legend("topright", paste("Treatment", levels(toenail$treatn)),

+ 1ty = 1:2)

> abline(h = 0, 1ty = 2)

So, what can be concluded from this fit? Are there any problems with the
predicted pattern observed between succesive measurements as compared to
what was observed in the present study? Not at all. We are only faced with
a slight difference between observed and expected results, which usually is
the case when modeling any set of observed responses. Residuals can be
seen in Figure 2.4 (right) and there is a higher (negative) deviation for the
central time points. A more useful diagnostic plot would consist in plotting
Pearson residuals against fitted values. Recall that Pearson residuals are
defined as )

ri = Yj — mym

mjfr (1 -7 )

where m; is the number of trials with the jth covariate pattern, 7 is the
expected proportional response (here, it is the fitted values from the model)
and y; is the number of successes with the jth covariate. We shall use such
a plot when fitting the data using an autoregressive dependence between
subunits (Sec. 2.5). Note that we can also use standardized Pearson residuals
defined in the usual way as

"

where h; stands for the leverage for the jth covariate.
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Finally, this is not the end of the story, and, obviously, other models could
be used, as we shall see in the next sections, but recall from Section 1.4 that
we are modeling the mean responses (marginal approach).

2.4 Alternating logistic regression

Alternating logistic regression can be used to fit a marginal model when
considering odds-ratio rather than raw frequency.

We will need the package alr, which can be downloaded from V. Carey’s
homepage. However, the package has been built for Windows. For those who
like me cannot imagine installing this kind of operating system, you can find
the same package targeted at Un*x platform at the following webpage: www .
aliquote.org/articles/tech/MDLD/. In comparison to the SAS procedure
GENMOD, the alr function only allows to fit binary correlated responses within
three kind of dependence model: general, exchangeable, and 1-nested (see
the help page). We will only compare the first two with the results obtained
from SAS.

Here is what we obtain with this kind of model, after having set initial
values for a (ainit):

> toenail.alr <- alr(y
+ data = toenail.raw)
> summary(toenail.alr)

treatn * time, id = idnum, ainit = 0.01,

2.5 Conditional model

The data can be analysed using a transition model by considering the model:

Hij

logit ( : ) = Bo+ BT + Batij + B3Titij + cayij—1

Mg

where we still assume Yj; ~ B(ui;), o being used to introduce the stationary
autoregressive dependence. Here, we consider a first-order AR model. We
can similarly introduce an AR(2) formulation within the same expression by
just including an additional term awy; j—2.

Comparison with an GEE analysis including an AR(1) structure.
At the time of this writtings, I cannot run successfully such a model with
the gee package. The basic formula interface would look like:

> gee(y ~ treatn * time, id = idnum, data = toenail.raw, family = binomial,
+ corstr = "AR-M", Mv = 1)

but I get an error message due to cluster size. In fact, as checked page 28,
we get a minimum cluster size of 1. I thus use geepack? which provides

2Replicating the previous analyses with this package lead to the same results compared
to Carey’s original package gee, and we can be quite confident in the computational com-
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quite the same functionnality. However, there is some limitations in this
case, and we cannot fit a second-order autoregressive model with geepack.
Nonetheless, we could specify the correlation structure in the zcor optional
parameter.

> toenail.gee.arl <- geeglm(y ~ treatn * time, data = toenail.raw,
+ id = idnum, family = binomial, corstr = "arl")
> summary(toenail.gee.arl)

Call:
geeglm(formula = y ~ treatn * time, family = binomial, data = toenail.raw,
id = idnum, corstr = "ari")

Coefficients:
Estimate Std.err Wald p (W)
(Intercept) -0.6451858 0.16997404 14.4080216 1.471740e-04
treatn 0.1168047 0.24964689 0.2189113 6.398707e-01
time -0.1426984 0.02854287 24.9944092 5.749679e-07
treatn:time -0.1172862 0.05519906 4.5147140 3.360450e-02

Estimated Scale Parameters:
Estimate Std.err
(Intercept) 1.022523 0.4532843

Correlation: Structure = arl Link = identity

Estimated Correlation Parameters:
Estimate Std.err
alpha 0.6847294 0.1608756
Number of clusters: 294 Maximum cluster size: 7

As can be seen from the summary output, the estimated correlation
is found to be 0.68. Again, the fitted values can be plotted against the
explanatory variable as

> interaction.plot(toenail$time, toenail$treatn, toenail.gee.ari$fitted.values,
+ ylim = ¢(0, 0.5), legend = FALSE, main = "Fitted data", xlab = "time",

+ ylab = "Expected frequency")

> legend("topright", paste("Treatment", levels(toenail$treatn)),

+ 1ty = 1:2)

but the geepack package offers an additional way to inspect graphically the
fit (but see ?plot.geeglm). However, due to some conflict between all fitted
methods called by the various packages we are using, I adapt a little bit the
plot.geeglm function and load it into the workspace before calling it:

parability between the two packages. As quoted from a discussion found on R-help archive
(2003), the two packages are using different estimators for the correlation parameter, and
therefore different weights for the observations. This is a widespread issue with GEE.

3a nicer way to solve this problem would be to detach the conflicting package(s), but
as I'm compiling this document using Sweave, this would force me to play with attach
and detach function all the time. ..
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Figure 2.5: The Toenail data. (Left) Expected mean responses in each
condition following an GEE fit with an embedded ARI1 process. (Right)
Fitted values and residuals plotted against each other.

> my.plot <- function(x, ...) {

+ xx <- x$fitted.values

+ rp.raw <- x$residuals

+ rp <- rp.raw/sd(xx)

+ plot(xx, rp, ylab = "Pearson residuals", xlab = "Fitted values")
+ abline(h = 0)

+ m <- lowess(rp ~ xx)

+ lines(m)

+

}

Note that there is also an anova method for R geeglm object. Using this
method, we get

> anova(toenail.gee.arl)

Analysis of 'Wald statistic' Table

Model: binomial, link: logit

Response: y

Terms added sequentially (first to last)

Df X2 P(>IChil)
treatn 1 0.771 0.380
time 1 56.459 5.74e-14
treatn:time 1 4.515 0.034

from which we found that time effect is highly significant, which is not
very surprising given the observed slopes (see Fig. 2.1). Treatment by time
interaction also appears to be significant at the .05 level.

One should, however, not forget to keep an eye open when interpreting
the p-value and the Wald or ¢ statistic resulting from GLMsP. We here
recall the reader to the so-called Hauck-Donner phenomenon [Hauck and
Dooner, 1977]. In the case of logistic regression, a small t-value indicates
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either an insignificant or a very significant effect, but step.glm assumes the
first. This is not very likely to happen in our context, but keep in mind
that statistics give in essence numbers that have to be interpreted, and one
should not accept significant results without investigating further the data.
Quoting Brian Ripley (s-news mailing list, 1998):

There is a little-known phenomenon for binomial GLMs that was
pointed out by Hauck & Donner (1977: JASA 72:851-3). The stan-
dard errors and ¢ values derive from the Wald approximation to the
log-likelihood, obtained by expanding the log-likelihood in a second-
order Taylor expansion at the maximum likelihood estimates. If there
are some BZ which are large, the curvature of the log-likelihood at ﬁ can
be much less than near 3; = 0, and so the Wald approximation under-
estimates the change in log-likelihood on setting (3; = 0. This happens
in such a way that as |5Al| — 00, the ¢ statistic tends to zero. Thus
highly significant coefficients according to the likelihood ratio test may
have non-significant t ratios.

To expand a little, if |t| is small it can EITHER mean than the
Taylor expansion works and hence the likelihood ratio statistic is small
OR that | Bl| is very large, the approximation is poor and the likelihood
ratio statistic is large. (I was using ‘significant’ as meaning practically
important.) But we can only tell if |Bl| is large by looking at the
curvature at 3; = 0, not at | B1|

There is one fairly common circumstance in which both conver-
gence problems and the Hauck-Donner phenomenon (and trouble with
step) can occur. This is when the fitted probabilities are extremely
close to zero or one. Consider a medical diagnosis problem with thou-
sands of cases and around fifty binary explanatory variables (which
may arise from coding fewer categorical factors); one of these indi-
cators is rarely true but always indicates that the disease is present.
Then the fitted probabilities of cases with that indicator should be one,
which can only be achieved by taking B; = oo. The result from glm
will be warnings and an estimated coefficient of around +10 (and an
insignificant ¢ value).
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Chapter 3

The Epilepsy data

3.1 The data

The data are obtained from a randomized double-blind, parallel group mul-
ticenter study for the comparison of placebo with a new anti-epileptic drug
(AED), in combination with one or two other AED’s. The study is de-
scribed in full detail in Faught et al. [1996]. The randomization of epilepsy
patients took place after a 12-week baseline period that served as a stabi-
lization period for the use of AED’s, and during wich the number of seizures
were counted. After that period, 45 patients were assigned to the placebo
group, 44 to the active (new) treatment group. Patients were then measured
seekly. Patients were followed (double-blind) during 16 weeks, after which
they were entered into a long-term open-extension study. Some patients
were followed for up to 27 weeks. The outcome of interest is the number of
epileptic seizures experienced during the last week, i.e., since the last time
the outcome was measured. The key research question is whether or not the
additional new treatment reduces the number of epileptic seizures.

There is an unstable behavior that could be applained by the presence
of extreme values, but it is also accounted by the fact that very little ober-
vations are available. There is also a serious drop in the the number of
measurements past the end of the actual double-blinde period, i.e., past
week 16.

3.2 The basics

First, we load the data and get the things right.

> epilepsy <- read.csv("dataset/epilepsy.csv", header = TRUE, sep = ",")
> epilepsy$id <- as.factor(epilepsy$id)

> epilepsy$trt.fac <- as.factor(epilepsy$trt)

> epilepsy$sex <- as.factor(epilepsy$sex)

> epilepsy$race <- as.factor(epilepsy$race)
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First, we can take a look at the first observations and display a simple
summary of the data:

> head(epilepsy)

trt id sex age race height weight bserate date0 studyweek nseizw trt.fac
1 01204 1 30 2 71 168 4.3 26/09/88 1 1 0
2 01204 1 30 2 71 168 4.3 26/09/88 2 0 0
3 01204 1 30 2 71 168 4.3 26/09/88 3 3 0
4 01204 1 30 2 71 168 4.3 26/09/88 4 1 0
5 01204 1 30 2 71 168 4.3 26/09/88 5 0 0
6 01204 1 30 2 71 168 4.3 26/09/88 6 1 0

> summary (epilepsy)

trt id sex age race
Min. :0.0000 601501 : 27 1:1161  Min. :19.00  1:1268
1st Qu.:0.0000 602423 : 27 2: 268 1st Qu.:29.00 2: 151
Median :1.0000 611602 : 27 Median :33.00
Mean :0.5095 601206 : 23 Mean :34.91
3rd Qu.:1.0000 601801 : 22 3rd Qu.:40.00
Max. :1.0000 601618 : 21 Max. :68.00

(Other) :1272

height weight bserate dateO
Min. :569.00  Min. : 88.0 Min. : 4.00 08/11/88: 71
1st Qu.:67.00 1st Qu.:165.0 1st Qu.: 6.00 16/07/90: 53
Median :69.00 Median :176.0 Median : 9.80 10/06/88: 35
Mean :68.88 Mean :175.3 Mean : 19.14 10/08/89: 33
3rd Qu.:72.00 3rd Qu.:196.0 3rd Qu.: 20.70 23/09/88: 33
Max. :76.00  Max. :270.0  Max. :198.30  24/05/90: 33

(Other) :1161
studyweek nseizw trt.fac

Min. : 1.000 Min. .000 0:696

: 0
1st Qu.: 5.000 1st Qu.: 0.000 1:723
Median : 9.000 Median : 1.000
Mean : 9.118 Mean : 3.177
3rd Qu.:13.000 3rd Qu.: 4.000
Max. :27.000 Max. :73.000

A quick numerical summary indicate that patients are 35+ 10 years old,
with half the participants being less than 33 years old. There is about 80%
of men among the participants, but a careful inspection of the data indicates
that women are all 33 years old.

> summary(epilepsy$age [unique (epilepsy$id)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
30.00 33.00 35.00 37.82 38.00 51.00

> sd(epilepsy$age[unique (epilepsy$id)])
[1] 7.646392
> table(epilepsy$sex[unique (epilepsy$id)])

1 2
73 16
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> table(epilepsy$sex[unique(epilepsy$id)], epilepsy$age[unique(epilepsy$id)],
+ dnn = list("Sex", "Age"))

Age

Sex 30 33 35 38 40 51
119 016 16 2 20
2 016 0 0 0 O

> table(epilepsy$race[unique (epilepsy$id)])

1 2
34 55

> table(epilepsy$sex[unique (epilepsy$id)], epilepsy$racelunique(epilepsy$id)],
+ dnn = list("Sex", "Race"))

Race
Sex 1 2

1 34 39

2 0 16

Again, we can take a look at the other univariate distributions.
> summary(epilepsy$height [unique (epilepsy$id)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
65.00 66.00 68.00 67.83 68.00 72.00

> sd(epilepsy$height [unique (epilepsy$id)])
[1]1 2.154467
> summary (epilepsy$weight [unique (epilepsy$id)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
135.0 150.0 155.0 157.8 168.0 179.0

> sd(epilepsy$weight [unique (epilepsy$id)])
[1] 14.38967

To get an idea of the follow-up period, we can look at a few subjects:

> tab.trt <- table(epilepsy$trt, epilepsy$id)
> tab.trt[, 1:5]

1204 1208 1213 1305 1307
0 19 20 16 16 16
1 0 0 0 0 0

and we can check that some of the patients were followed far longer than
the 16 weeks as initially planned (e.g. patient whose id is 1208 was followed
for 20 weeks, with placebo). Indeed, the range of the follow-up duration is

> range(tab.trt[tab.trt != 0])
[1] 2 27
> sum(tab.trt >= 16)

[11 77
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Figure 3.1: The Epilepsy data. Age and sex of the participants.
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Figure 3.2: The Epilepsy data. Mean responses in each condition.

We can see that there are several dropouts (n = 89 — 77 = 12 patients), as
can be expected for such longitudinal study.

Then, we shall summarize the total number of seizures per subject with
an histogram, after having aggregated the data in a more convenient way
than that used by default by R.
> epilepsy.nseiz <- with(epilepsy, tapply(nseizw, id, sum))
> epilepsy.nseiz.aggr <- cut(epilepsy.nseiz, breaks = c(seq(0,

+ 100, by = 10), max(epilepsy.nseiz)))
> (res <- table(epilepsy.nseiz.aggr))

epilepsy.nseiz.aggr
(0,101 (10,20] (20,30] (30,401 (40,501 (50,601 (60,701 (70,801

16 21 13 12 4 3 5 2
(80,90] (90,100] (100,509]
2 0 11
> barplot(res, las = 2, ylab = "# observations", main = "Total # seizures")

We will first fit a Poisson regression model to the response variable, the
number of seizures nseizw. Following the convention of Molenberghs &
Verbeke, our model takes the form:

In(\;/n;) = Po + (1 Baseline; + (2T;

where Y; is assumed to follow a Poisson distribution PJA;, and n; is the
number of weeks subject i has been followed for. Baseline; stands for the
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baseline seizure rate for subject ¢ and is coded as bserate in our data.frame.
We can check that this model is strictly equivalent to one where In()\;) =
In(n;) + Bo + 41 Baseline; + 32T}, where In(n;) is most often called an ‘offset’
term.

We can fit the model as follow with R:

> epilepsy.glm <- glm(nseizw ~ bserate + trt, data = epilepsy,
+ offset = log(studyweek), family = poisson)
> summary (epilepsy.glm)

Call:
glm(formula = nseizw ~ bserate + trt, family = poisson, data = epilepsy,
offset = log(studyweek))

Deviance Residuals:
Min 1Q Median 3Q Max
-7.4043 -1.8558 -0.7565 0.9356 15.8580

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -1.3036182 0.0217910 -59.82 <2e-16 **x
bserate 0.0175103 0.0002459 71.20 <2e-16 **x*
trt -0.5755265 0.0340664 -16.89 <2e-16 *x*

Signif. codes: O 'xxx' 0.001 'sx' 0.01 '¥' 0.05 '." 0.1 "' "1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 11943.3 on 1418 degrees of freedom
Residual deviance: 8513.8 on 1416 degrees of freedom
AIC: 11330

Number of Fisher Scoring iterations: 6

Be careful with the offset: we need to specify the log component, and not
only the variable name. We can see from the results of the fit that the treat-
ment significantly reduces the average weekly number of epileptic seizures.

3.3 Marginal model

In this section, we will start our analyses by considering a Poisson model
expressed as

Bo + Biti;  if placebo,

lo Ai' =
g( J) Bo + thij if treated,

with Yj; ~ P(Aij). We can see that this model assumes a common intercept
for both treatment groups. This approach is similar to the one we used in
Section 2.3, except we now use a log link.

> epilepsy.gee <- gee(nseizw
+ family = poisson)

trt + studyweek, id = id, data = epilepsy,
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Parameter Estimate SE z value

Bo 1.3581  0.1729  7.8549
51 0.0232  0.3150 0.0736
B2 -0.0244  0.0128 -1.8994

Table 3.1: Estimates obtained from the GEE1 analysis. (z values are based
on robust SE)

(Intercept) trt  studyweek
1.35811275 0.02317964 -0.02439452

A summary of the call to the gee function yields the estimates reported in
Tab. 3.1.
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Chapter 4

The fluvoxamine trial

4.1 The data

Accumulated experience with fluvoxamine, a serotonin reuptake inhibitor, in
controlled clinical trials has show it to be as effective as conventional antide-
pressant drugs and more effective than placebo in the treatment of depres-
sion [Burton, 1991]. However, many patients who suffer from depression
have concomitant morbidity with conditions such as obsessive-compulsive
disorder, anxiety disorders and, to some extent, panic disorders. In most
trials, patients with comorbidity are excluded, and therefore, it is of inter-
est to gather evidence as to the importance of such factors, with a view
on improved diagnosis and treatment. The general aim of this study was
to determine the profile of fluvoxamine in ambulatory clinical psychiatric
practice.

A total of 315 patients were enrolled with one or more of the following
diagnoses: depression, obsessive, compulsive disorder, and panic disorder.
Several covariates were recorded, such as gender and initial severity on a 5-
point ordinal scale, where severity increases with category. After recruitment
of the patient in the study, he or she was investigated at four visits (weeks
2, 4, 8, and 12). On the basis of about twenty psychiatric symptoms, the
therapeutic effect and the side-effects were scored at each visit in an ordinal
manner. Side-effect is coded as (1) = no; (2) = not interfering with function-
ality of patient; (3) = interfering significantly with functionality of patient;
(4) = the side-effect surpasses the therapeutic effect. Similarly, the effect of
therapy is recorded on a four-point ordinal scale: (1) = no improvement over
baseline or worsening; (2) = minimal improvement (not changing functional-
ity); (3) = moderate improvement (partial disappearance of symptoms); and
(4) = important improvement (almost disappearance of symptoms). Thus
a side effect occurs if new symptoms occur while there is therapeutic effect
if old symptoms disappear.

There is also a lot a non negligeable amount of missing data but a much
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larger fraction is fully observed than in the analgesic trial. Among the in-
complete sequences, dropout is much more common than intermittent miss-
ingness, the latter type confined to two sequences only. It should also be
noted that there are subjects, 14 in total without any follow-up measure-
ments. This group of subjects is still an integral part of the trial, as they
contain baseline information, includinf covariate information and baseline
assessement of severity of the mental illness.

4.2 Summary of the data

Before running into detailed and purposeful association models, it is always
a good idea to start with the basics, as already done with the preceding

datasets.
We happen to setup the data as follow:

> fluvox <- read.csv("dataset/placpape.csv", header = TRUE, sep = ",")
> table(fluvox$SEX)

1 2
112 203

> summary (fluvox$AGE)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
16.00 32.00 41.00 42.41 52.00 80.00 3.00

> sd(fluvox$AGE, na.rm = TRUE)

[1] 13.32038

As can be seen, we have twice as much women (coded as ‘2") as men
and participants are 41 £ 13.3 years old on average. Next, we can sum-
marize in a convenient table the diagnosed patients. We want to know
how many of them have been classified as relevant to depressive, obses-
sive or panic category, as well as the number of patients who are showing
two or more of these symptomatic behavior (see for instance the result of
table (fluvoxDEPRES, fluvor0OBSESSI) ).

> par(mfrow = c(2, 2))

> barplot(table (fluvox$SEX), names.arg = c("Men", "Women"), ylab = "Frequency",
+ las = 1)

> hist(fluvox$AGE, prob = TRUE, main = "", xlab = "Age")

> lines(density(fluvox$AGE, na.rm = T), col = "red")

4.3 Looking at usual Association models
Let’s look first at the results of fitting the data with Goodman’s conditional

model and Dale’s marginal model which were discussed in Section. 1.4.
First, we set up Table 6.6 of Molenberghs & Verbeke as follow:
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Figure 4.1: The fluvoxamine data. Participants’ overview.
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> fluvox.tab6.6 <- matrix(c(105, 34, 2, 3, 14, 80, 7, 1, 0, 7,
+ 10, 0, 0, 1, 2, 2), nc = 4)

Recall that this table results from cross-classifying side effects at the second
and third occasion.

The following function allows us to compute local and global cross-ratio
coefficients.

> global.cr <- function(x, i, j) {
if (any(x > 1))
x <- x/sum(x)
pr <- apply(x, 1, sum)
pc <- apply(x, 2, sum)
res <- (x[i, j1 * (1 - x[nrow(x), jl - x[i, ncol(x)] + x[i,
Jj1))/((x[i, ncol(x)] - x[i, jI) * (x[nrow(x), jl - x[i,
JjI)
return(res)
}
local.cr <- function(x, i, j) {
if (any(x > 1))
x <- x/sum(x)
stopifnot(i < nrow(x) - 1, j < ncol(x) - 1)
res <- (x[i, jl * x[i + 1, j + 11)/(x[i + 1, j] * x[i, j +
1)

return(res)

+ 4+ + + + +FVo+F+ o+ o+t o+ o+ o+ o+

+}
> global.cr.tab <- function(x) {
+}
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Chapter 5

Other datasets

5.1 Datasets

5.1.1 The analgesic trial

The data come from a single-arm clinical trial in 395 patients who are given
analgesic treatment for pain caused by chronic nonmalignant disease. Treat-
ment was to be administered for 12 months and assessed by means of a
‘Global Satisfaction Assessment’ (GSA) scale, rated on a five-point scale:
(1) = very good; (2) = good; (3) = indifferent; (4) = bad; (5) = very bad.

Apart from the outcome of interest, number of covariates are available,
such as age, sex, weight, duration of pain in years prior to the start of the
study, type of pain, physical functioning, psychiatric condition, respiratory
probelms, etc. GSA was rated by each person four times during the trial, at
months 3, 6, 9 and 12. It should be noted that there are numerous missing
values. Not only monotone or dropout occurs, there are also subjects with
intermittent values.

5.1.2 The epilepsy data
5.1.3 The POPS study

The Project on Preterm and Small-for-gestational age infants (POPS) col-
lected information on 1338 infants born in The Netherlands in 1983 and
having gestational age less than 32 weeks and/or birthweight less than 1500g
(Verloove et al., 1988). In total, 133 clinics were involved. The study pop-
ulation represents 94% of the births in that year with similar gestational
age and birthweight characteristics. Prenatal, perinatal, and postnatal in-
formation as well as two year follow-up data were collected. Furthermore,
the data base contains information on the delivery and specific details of the
infant. After two years the child was reexamined.

Three ability scores were measured at the age of two, and risks factors
were measured at delivery. All ability scores were recorded in a dichotomous
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manner. They were available for 799 children. The first score (ABIL1)
checks whether the child can pile three bricks, ABILS1 = 1 corresponds
to ‘no’, whereas ABIL1 = 2 to ‘yes’. The second score (ABIL2) measures
whether the physical movements of the child are natural, ABIL2 = 1 (no)
and ABIL2 = 2 (yes). Although ABIL2 is a purely physical ability score,
ABIL1 is a combination of physical and mental qualities. The third ability
score, ABIL3, expressess whether or not the child is able to put a ball in
a box if he or she is asked to do so. The problem is to determine the risk
factors for low performance at the three tests. Further it is of interest to
compare the predicted probabilities taking into account the relationship be-
tween the responses to those calculated under the assumption of independent
responses.

On the 1338 subjects, 818 (61.1%) have all three ability scores observed,
and 471 (35.2%) have none of them. Only 49 (3.7%) have partial informa-
tion. The latter is not unexpected, since two years lapsed between enrollment
and the assessment of the ability scores.

References:
Verloove, S. P. and Verwey, R. Y. (1988). Project on preterm and small-
for-gestational age infants in the Netherlands, 1983 (Thesis, University of
Leiden). University Microfilms International, Ann Arbor, Michigan, USA,
no. 8807276.

5.1.4 National toxicology program data

The developmental toxicity studies introduced in this section are conducted
at the Research Triangle Institute, which is under contract to the National
Toxicology Program of the United States (NTP data). These studies in-
vestigate the effects in mice of five chemicals: ethylene glycol (Price et
al., 1985), diethylene glycol dimethyl ether (Price et al., 1987), and di(2-
ethylhexyl)phthalate (Tyl et al., 1988).

a) Ethylene Glycol. Ethylene glycol (EG) is also called 1,2-ethanediol
and can be represented by the chemical formula HOCH2CH20H. It is a
high-volume industrial chemical with many applications. EG is used as
an antifreeze in cooling and heating systems, as one of the components of
hydraulic brake fluids, as an ingredient of electrolytic condensers, and as a
solvent in the paint and plastics industries. Furthermore, EG is employed in
the formulation of several types of inks, as a softening agent for cellophane,
and as a stabilizer for soybean foam used to extinguish oil and gasoline fires.
Also, one uses EG in the synthesis of various chemical products, such as
plasticizers, synthetic fibers, and waxes.

EG may represent little hazard to human health in normal industrial
handling, except possibly when used as an aerosol or at elevated tempera-
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tures. EG at ambient temperatures has a low vapor pressure and is not very
irritating to the eyes or skin. However, accidental or intentional ingestion
of antifreeze products, of which approximately 95% is EG, is toxic and may
result in death.

Price et al. (1985) describe a study in which timed-pregnant CD-1 mice
were dosed by gavage with EG in distilled water. Dosing occurred during
the period of organogenesis and structural development of the foetuses (ges-
tational days 8 through 15). The doses selected for the study were 0, 750,
1500, or 3000 mg/kg/day. Available data are: the number of dams con-
taining at least one implant, the number of dams having at least one viable
fetus, the number of live foetuses, the mean litter size, and the percentage
of malformation for three different classes: external malformations, visceral
malformations, and skeletal malformations. While for EG, skeletal mal-
formations are substantial in the highest dose group, external and visceral
malformations show only slight dose effects.

b) Di(2-ethylhexyl)Phthalate. Di(2-ethylhexyl)phthalate (DEHP) is also
called octoil, dicotyl phthalate, or 1,2-benzenedicarboxylic acid bis(2-ethylhexyl)
ester. It can be represented by C24H3804. DEHP is used in vacuum pumps.
Furthermore, this ester as well as other phthalic acid esters are used exten-
sively as plasticizers for numerous plastic devices made of polyvinyl chloride.
DEHP provides the finished plastic products with desirable flexibility and
clarity.

It has been well documented that small quantities of phthalic acid esters
may leak out of polyvinyl chloride plastic containers in the presence of food,
milk, blood, or various solvents. Due to their ubiquitous distribution and
presence in human and animal tissues, considerable concern has developed
as to the possible toxic effects of the phthalic acid esters.

In particular, the developmental toxicity study described by Tyl et al.
(1988) has attracted much interest in the toxicity of DEHP. The doses se-
lected for the study were 0, 0.025, 0.05, 0.1, and 0.15%, corresponding to a
DEHP consumption of 0, 44, 91, 191, and 292 mg/kg/day, respectively. Fe-
males were observed daily during treatment, but no maternal deaths or dis-
tinctive clinical signs were observed. The dams were sacrificed, slightly prior
to normal delivery, and the status of uterine implantation sites recorded. A
total of 1082 live foetuses were dissected from the uterus, anesthetized, and
examined for external, visceral, and skeletal malformations.

There is a clear dose-related trends in the malformation rates. The aver-
age litter size (number of viable animals) decreases with increased levels of
exposure to DEHP, a finding that is attributable to the dose-related increase
in fetal deaths.
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c) Diethylene Glycol Dimethyl Ether. Other names for diethylene
glycol dimethyl ether (DYME) are diglyme and bis(2-methoxyethyl) ether.
DYME has as its chemical formula: CH30(CH2)20(CH2)20CH3. It is a
component of industrial solvents. These are widely used in the manufac-
ture of protective coatings such as lacquers, metal cotings, baking enamels,
etc. Although to date, several attempts have proven inadequate to evalu-
ate the potential of glycol ethers to produce human reproductive tocicity,
structurally related compounds have been identified as reproductive toxi-
cants in several mammalian species, producing (1) testicular toxicity and
(2) embryotoxicity.

Price et al. (1987) describe a study in which timed-pregnant mice
were dosed with DYME throughout major organogenesis (gestational days
8 through 15). The doses selected for the study were 0, 62.5, 125, 250 and
500 mg/kg/day.

References:

Price, C. J., Kimmel, C. A., Tyl, R. W. and Marr, M. C. (1985). The
developmental toxicity of ethylene glycol in mice. Tozicology and Applied
Pharmacology, 81, 113-127.

Price, C. J., Kimmel, C. A., George, J. D. and Marr, M. C. (1987). The
developmental toxicity of diethylene glycol dimethyl ether in mice. Funda-
mental and Applied Tozicology, 8, 115-126.

Tyl, R. W., Price, C. J., Marr, M. C. and Kimmel, C. A. (1988). Devel-
opmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer
344 rats and CD-1 mice. Fundamental and Applied Toxicology, 10, 395—412.

5.1.5 The sports injuries trial

These data come from a randomized, parallel group, double-blind trial in
men comparing the effect of an active treatment to placebo on post-operative
shivering and per-operative hemodynamics. The primary responses of inter-
est were severity of post-operative shivering measured from the end of anes-
thesia every 5 minutes during 30 minutes as none (0), mild (1), moderate
(2), or severe (3), and effect of treatment on overall consciousness assessed
from the end of anesthesia at 10, 20, 30, 45, 60, 90 and 120 minutes as im-
possible to awake (0), difficult to awake (1), easy to awake (2), and awake,
eyes open (3). One hundred forty patients were assigned to each treatment
group.

Since this trial occurred in a very short time period, there is very little
missing data. There was one patient who had no response information for
either variable, so this patient is excluded from all analyses. There were also
3 patients with some missing information on shivering or overall conscious-
ness, leaving 138 patients with complete information.

One interesting feature of these data is that there are structural zeros
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in the awake variables. A patient could never become less awake over time,
thus the cross-tabulation of the score over time contains zeros in the lower
left corner.

5.1.6 Age related macular degeneration trial

These data arise from a randomized multi-centric clinical trial comparing
an experimental treatment (interferon-alpha) to a corresponding placebo in
the treatment of patients with age-related macular degeneration. Through-
out the analyses done, we focus on the comparison between placebo and
the highest dose (6 million units daily) of interferon-alpha (Z), but the full
results of this trial have been reported elsewhere (Pharmacological Therapy
for Macular Degeneration Study Group 1997). Patients with macular de-
generation progessively lose vision. In the trial, the patients’ visual acuity
was assessed at different time points (4 weeks, 12 weeks, 24 weeks, and 52
weeks) through their ability to read lines of letters on standardized vision
charts. These charts display lines of 5 letters of decreasing size, which the
patient must read from top (largest letters) to bottom (smallest letters).
Each line with at least 4 letters correctly read is called one ‘line of vision’.
The patient’s visual acuity is the total number of letters correctly read. The
primary endpoint of the trial was the loss of at least 3 lines of vision at
1 year, compared to their baseline performance (a binary endpoint). The
secondary endpoint of the trial was the visual acuity at 1 year (treated as
a continuous endpoint). Buyse and Molenberghs [1998] examined whether
the patient’s performance at 6 months could be used as a surrogate for their
performance at 1 year with respect to the effect of interferon-alpha. They
looked at whether the loss of 2 lines of vision at 6 months could be used as a
surrogate for the loss of at least 3 lines of vision at 1 year. They also looked
at whether visual acuity at 6 months could be used as a surrogate for visual
acuity at 1 year.

Visual acuity can be measured in several ways. First, one can record the
number of letters read. Alternatively, dichotomized versions (at most 3 lines
of vision lost, or at least 3 lines of vision lost) can be used as well. There-
fore, these data will be useful to illustrate methods for the joint modeling
of continuous and binary outcomes, with or without taking the longitudinal
nature into account. In addition, though there are 190 subjects with both
month 6 and month 12 measurements available, the total number of lon-
gitudinal profiles is 240, but only for 188 of these have the four follow-up
measurements been made.
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Notes

#Recall from Linear Models that a response variable Y could be described as a linear
combination of predictors, and such a model can be written as Y = X + ¢, where
gi ~ N(0,0%) (i.i.d.). We usually want to estimate # and it can be shown that §* ~
N(B,0?T7(B)), where 8* is the M.L.E. of 3 and 7 is the Fisher information.

First of all, let’s consider the score function V(6). It is the partial derivative, with
respect to the parameter of interest, say 6, of the log likelihood, and can be found using
the chain rule:

_ 0 } _ 1 0L(0; X)
V(o) = %0 log L(0; X) = L0X) a0
One can show that
_ fo(x;6) o [ fo(m0) . _ [ Of(x:0)
E(V|0) = on F(z:0) dF (z;0) = /X F(:0) fz;0)de = /X 20 dz,

and that E(V | 0) = 0 if some differentiability conditions are met. Thus, the expected
value of the score is zero. In other words, if one were to repeatedly sample from some
distribution, and repeatedly calculate the score with the true 6, then the mean value of
the scores would tend to zero as the number of repeat samples approached infinity. The
variance of the score simply is the Fisher information, Z(0), also written as

1(0) = E { {% log £(0; X)} | e} .

Note that the Fisher information, as defined above, is not a function of any particular
observation, as the random variable X has been averaged out.

If we define our starting point, 6y, for computing the score function, we can develop
V(0), about 6o, through a Taylor expansion such that:

where

T(0) == VV"|o=s, log f(¥i:0)
i=1
is the observed information matrix at fy. Now, setting § = 0*, using that V(") = 0 and
rearranging gives us:

0" =6 + j_l(QO)V(Qo).

By recurence, we can therefore use
Om1 = Om + T (0m)V (0m)-

PHere is a short summary of the construction and properties of Wald statistics. Let
Y1,...,Yn beii.d. Bernoulli variables whose probability functions are defined such that

PI“-L' k
In (1 — Pri> =P+ ;@'Xu = fs(Xa),

where Pr; = Pr(Y; = 1) = [1 + exp(—f5(X;))] ! and X1, ..., Xk are observations taken
from k independent variables.

For inference purpose, we can select 5y as the parameter of interest, without any loss
of generality. Our hypothesis could be, for instance,

Hy : By = Bro vs. Hy @ B 75 Bro-
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If we consider both the MLE of B, Bk, and H the inverse of the empirical information
matrix, Wald’s statistic is defined by

eV = (Br — Bro)?
Hyp ’

where Hyy, is the estimated variance of 3. Under Ho, €V asymptotically follows a x2(1)
distribution (like the LR statistic, —21In \).
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