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Foreword

Statistical analysis were done using R version 3.4.3 (2017-11-30), which is freely available from
CRAN. You may find convenient to run R through RStudio. Indeed, RStudio offers really great
support for editing and running R scripts. You can even organize your work into a project, with
version control and automatic reporting built on the fly. I personally choose to work like in the 80s–
although I was just a kid at that time–with a simple text editor and an interactive shell available
within few key presses. This is possible thanks to Emacs and the brilliant ESS mode.

I replicated all SAS code using SAS University Edition. It can run locally on your computer (using,
e.g., Virtual Box) or directly in the cloud. I do not hold a personal licence for SAS (although I could
get one from several universities where I am teaching) and so I found this solution particularly
handy to compare SAS and R output.

In addition, I provide Stata code to replicate most if not all analyses described in this document.
The code has been tested with Stata 13 but should work on any version > 10.

1 Analysis of Clinical Trials using SAS

The following analyses are based on Dmitrienko et al. [2005], with data avalaible online at Analysis
of Clinical Trials Using SAS: A Practical Guide.

1.1 The HAMD17 study

Context. This is a multicenter clinical trial comparing experimental drug vs. placebo in patients
with major depression disorder. The outcome is the change from baseline after 9 weeks of acute
treatment, and efficacy is measured using the total score of the Hamilton depression rating scale
(17 items).

This is a classical application of unbalanced design and potential heterogeneity between clinical
centres, where there is an unequal number of observations per treatment (here, drug by cen-
ter).

Here is one of many ways to get data right into R:

raw <- textConnection("
100 P 18 100 P 14 100 D 23 100 D 18 100 P 10 100 P 17 100 D 18 100 D 22
100 P 13 100 P 12 100 D 28 100 D 21 100 P 11 100 P 6 100 D 11 100 D 25
100 P 7 100 P 10 100 D 29 100 P 12 100 P 12 100 P 10 100 D 18 100 D 14
101 P 18 101 P 15 101 D 12 101 D 17 101 P 17 101 P 13 101 D 14 101 D 7
101 P 18 101 P 19 101 D 11 101 D 9 101 P 12 101 D 11 102 P 18 102 P 15
102 P 12 102 P 18 102 D 20 102 D 18 102 P 14 102 P 12 102 D 23 102 D 19
102 P 11 102 P 10 102 D 22 102 D 22 102 P 19 102 P 13 102 D 18 102 D 24
102 P 13 102 P 6 102 D 18 102 D 26 102 P 11 102 P 16 102 D 16 102 D 17
102 D 7 102 D 19 102 D 23 102 D 12 103 P 16 103 P 11 103 D 11 103 D 25
103 P 8 103 P 15 103 D 28 103 D 22 103 P 16 103 P 17 103 D 23 103 D 18
103 P 11 103 P -2 103 D 15 103 D 28 103 P 19 103 P 21 103 D 17 104 D 13
104 P 12 104 P 6 104 D 19 104 D 23 104 P 11 104 P 20 104 D 21 104 D 25
104 P 9 104 P 4 104 D 25 104 D 19
")
d <- scan(raw, what = "character")
rm(raw)
d <- as.data.frame(matrix(d, ncol = 3, byrow = TRUE))
names(d) <- c("center", "drug", "change")
d$change <- as.numeric(as.character(d$change))
d$drug <- relevel(d$drug, ref = "P")
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Figure 1: Distribution of change scores in each centre

Briefly, the idea is to copy and paste the SAS DATALINES instruction as raw text and to scan the flow
of characters. The next bit of code uses matrix to arrange the data into a tabular dataset with 3
columns corresponding to center, drug and change score. When transforming this table to a data
frame, center and drug will be converted to factors but we need to handle the proper conversion
of change to numerical values. Also, note that we set the reference category to the Placebo group
to simplify things a bit.

Some basic exploratory graphical analysis follows. In the next chunk, we display the raw data for
each centre and highlight the difference between drug and placebo using a trend line (Figure 1).
Note the use of aes(group = 1) when calling geom_smooth as there is no real grouping variable
in the data structure other than the ones that are already used (drug on the x-axis and center for
facetting).

p <- ggplot(data = d, aes(x = drug, y = change))
p <- p + geom_jitter(width = .2)
p <- p + geom_smooth(aes(group = 1), method = "lm", se = FALSE, colour = "grey30")
p + facet_grid(~ center) + labs(x = "Drug type", y = "HAMD17 change")

Using Hmisc package, we can easily build a Table of summary statistics by drug and center. For
simplicity, we will limit the display to the first 3 centers in Table 1.

fm <- change ~ drug + center
s <- summary(fm, data = subset(d, center %in% c("100","101","102")),

method = "cross", fun = smean.sd)

Table 1: Mean HAMD17 change by drug, center

drug 100 101 102 Total
N Mean SD N Mean SD N Mean SD N Mean SD

P 13 12 3.4 7 16 2.7 14 13 3.6 34 13 3.6
D 11 21 5.6 7 12 3.3 16 19 4.7 34 18 5.7

Total 24 16 6.3 14 14 3.7 30 16 5.0 68 16 5.3

Only 3 out of 5 centres are shown.

Now, let’s consider average change scores by center, which are displayed in Figure 2. First, we
need to compute the average score in each group, and then compute the difference between the
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Figure 2: Average difference between drug and placebo in each centre

two (called delta). This could be done with Hmisc summarize command, but we will rely on the
plyr package and its ddply command. What is important is that the results are returned as a data
frame to facilitate the use of ggplot data structure in turn.

r <- ddply(d, "center", summarize,
delta = mean(change[drug == "D"]) - mean(change[drug == "P"]))

p <- ggplot(data = r, aes(x = center, y = delta))
p <- p + geom_point() + geom_hline(yintercept = 0, linetype = 2, colour = "grey30")
p + labs(x = "Center", y = "Difference D-P")

Now comes the modeling stage. First, we will analyse the primary endpoint using fixed-effect
models. Dmitrienko et al. [2005] provide all the maths that are necessary to understand how to
derive various types of sum of squares, and this is further addressed in, e.g., REF., or on Stack
Exchange.

Let us first update the formula we used for producing Table 1 to incorporate an interaction term,
drug:center (in R, drug * center will expand to drug + center + drug:center):

fm <- change ~ drug * center

replications(change ~ drug:center, data = d)

## $`drug:center`
## center
## drug 100 101 102 103 104
## P 13 7 14 10 6
## D 11 7 16 9 7

As can be seen, data are slightly imbalanced for all but centre 101.

By default, R computes so-called “sequential” Type I sum of squares (SS), and here is what we get
when using a standard combination of lm (to compute parameter estimates) and anova (to build the
ANOVA table for the regression model):

options(contrasts = c("contr.sum", "contr.poly"))
m <- lm(fm, data = d)
anova(m)

## Analysis of Variance Table
##
## Response: change
## Df Sum Sq Mean Sq F value Pr(>F)

3
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## drug 1 888.04 888.04 40.0745 9.365e-09 ***
## center 4 87.14 21.78 0.9831 0.4209278
## drug:center 4 507.45 126.86 5.7249 0.0003761 ***
## Residuals 90 1994.38 22.16
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The car package allows to work with Type II and Type III SS. Type III SSs, also called partial or
Yates’ weighted squares of means are the default in Stata, SPSS or SAS. Stata does not even offer
Type II SS. So, if we are interested in computing Type II sum of squares in R, we could call Anova
like this:

car::Anova(m, type = "II")

## Anova Table (Type II tests)
##
## Response: change
## Sum Sq Df F value Pr(>F)
## drug 889.78 1 40.1528 9.109e-09 ***
## center 87.14 4 0.9831 0.4209278
## drug:center 507.45 4 5.7249 0.0003761 ***
## Residuals 1994.38 90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type III analysis is readily obtained by replacing type = "II" with type = "III" as shown in the
next code block. It should be noted that without altering the default contrast treatment that are
used by R, as we did in the above chunk, we would not get the correct results for the Type III
analysis.

car::Anova(m, type ="III")

## Anova Table (Type III tests)
##
## Response: change
## Sum Sq Df F value Pr(>F)
## (Intercept) 22344.6 1 1008.3442 < 2.2e-16 ***
## drug 709.8 1 32.0320 1.783e-07 ***
## center 91.5 4 1.0318 0.3953130
## drug:center 507.4 4 5.7249 0.0003761 ***
## Residuals 1994.4 90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that in the case of Type III SS, we can also use the base command drop1 and we will get
similar results:

drop1(m, scope = ~ ., test = "F")

## Single term deletions
##
## Model:
## change ~ drug * center
## Df Sum of Sq RSS AIC F value Pr(>F)
## <none> 1994.4 319.29
## drug 1 709.82 2704.2 347.74 32.0320 1.783e-07 ***
## center 4 91.46 2085.8 315.78 1.0318 0.3953130
## drug:center 4 507.45 2501.8 333.96 5.7249 0.0003761 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To sum up, the results from the different approaches are exposed in Table 2.
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Sidenote. Here is how we could compute the parameter estimates and the SS corresponding to
the drug effect in the case of a Type III analysis. The code follows that posted on Stack Exchange,
with minor adaptation. How this works is quite simple: We first get the design matrix stored in our
model m and then solve the “normal equations” (X ′X)β̂ = X ′y in order to get β̂ = (X ′X)−1X ′y.

D <- model.matrix(m) ## design matrix
bhat <- solve(t(D) %*% D) %*% t(D) %*% d$change ## beta parameters
get.ss <- function(C) {
require(MASS)
teta <- C %*% bhat
M <- C %*% ginv(t(D) %*% D) %*% t(C)
SSH <- t(teta) %*% ginv(M) %*% teta
return(as.numeric(SSH))

}
## SS(drug|center,drug:center)
get.ss(matrix(c(0,1,0,0,0,0,0,0,0,0), nrow = 1, ncol = 10))

## [1] 709.8196

Table 2: Overview of fixed-effects analysis for the HAMD17 study

(a) Type I SS

Sum Sq Df F value Pr(>F)

drug 888.04 1 40.07 0.0000
center 87.14 4 0.98 0.4209
drug:center 507.45 4 5.72 0.0004
Residuals 1994.38 90

(b) Type II SS

Sum Sq Df F value Pr(>F)

drug 889.78 1 40.15 0.0000
center 87.14 4 0.98 0.4209
drug:center 507.45 4 5.72 0.0004
Residuals 1994.38 90

(c) Type III SS

Sum Sq Df F value Pr(>F)

drug 709.82 1 32.03 0.0000
center 91.46 4 1.03 0.3953
drug:center 507.45 4 5.72 0.0004
Residuals 1994.38 90

The authors later used the Gail-Simon test[Gail and Simon, 1985] to test for qualitative interaction
between treatment and strata. The corresponding two-tailed Likelihood ratio test is implemented
in the QualInt package.

library(QualInt)
with(d, qualint(change, drug, center, test = "LRT"))

##
## Call:
## qualint(y = change, trtment = drug, subgrp = center, test = "LRT")
##
## Type:
## continuous
##
## Estimating Results for Mean Difference:
## Estimate Std. Error Lower CI Upper CI
## 100 -8.944 1.922 -12.711 -5.177
## 101 4.429 1.601 1.290 7.567
## 102 -5.571 1.517 -8.544 -2.599
## 103 -7.578 2.877 -13.217 -1.939
## 104 -10.381 2.793 -15.856 -4.906
##
## Test:
## LRT
##
## p-value:
## 0.02968
##
## Power:
## 0.58
##
## Alpha:
## 0.05
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Figure 3: Average differences between drug and placebo stratified by centres

This R package even provides a graphical method when specifying options test = "IBGA" and
plotout = TRUE (Figure 3). The IBGA method relies on simultaneous 95% confidence intervals as
described in Pan and Wolfe [1997].

1.2 The Urinary incontinence trial

Context. This is a subset of data collected in an RCT on urinary incontinence where the primary
endpoint was the percent change from baseline of number of incontinence episodes per week over
an 8-week period. Patients were initially randomized into one of three strata depending on the
baseline frequency of incontinence episodes.

This is an example of the use of stratified non-parametric analysis.

This time, we managed to get data in the right format using this little R script: urininc.R. Assuming
it is located in the current working directory, we can source it into R and we will get a data frame
named d.

source("./urininc.R")
str(d)

## 'data.frame': 200 obs. of 3 variables:
## $ group : Factor w/ 2 levels "Placebo","Drug": 1 1 1 1 1 1 1 1 1 1 ...
## $ strata: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## $ change: num -86 -38 43 -100 289 0 -78 38 -80 -25 ...

To summarize the data, we can again make use of Hmisc summary for “crossed” data.

s <- summary(change ~ group + strata, data = d, method = "cross", overall = FALSE)

Table 3: Mean change in number of incontinence episods by drug, strata

group 1 2 3
N Missing N Missing N Missing

Placebo 40 0 −29.0 32 8 −28.7 20 0 −11.7

Drug 39 1 −24.2 33 7 −53.8 19 1 −47.7
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Figure 4: Density estimates for the percent change in frequency of incontinence episodes

As can be seen, there is a higher number of missing values in strata 2 (around 20% in both groups)
and larger variations on average between the two group in the third strata. Next, we displayed
the distribution of the percent change in frequency of incontinence episodes as density curves in
Figure 4. Instead of relying on geom_density, we use the rather generic geom_lines with an extra
stat= parameter.

p <- ggplot(data = d, aes(x = change, colour = group))
p <- p + geom_line(stat = "density", adjust = 1.2) + facet_grid(~ strata)
p + scale_x_continuous(limits = c(-100, 150)) + labs(x = "Percent change", y = "Density")

The authors used the van Elteren test [van Elteren, 1960], which can be regarded as an extension of
the Wilcoxon rank sum test for stratified data where larger weights are assigned to rank sums from
smaller strata. An alternative is the “aligned rank test” proposed by Hodges and Lehman [1962]
as discussed by Mehrotra et al. [2010]. In R, there is an old version that is mentionned on the R
listserve (August 2005), but for now we will use the coin package as shown below:

library(coin)
dc <- subset(d, complete.cases(d))
independence_test(change ~ group | strata, data = dc,

ytrafo = function(data) trafo(data, numeric_trafo = rank,
block = dc$strata),

teststat = "quad")

##
## Asymptotic General Independence Test
##
## data: change by
## group (Placebo, Drug)
## stratified by strata
## chi-squared = 4.7446, df = 1, p-value = 0.02939

Although we get different results from the authors, we would reach the same conclusion, namely
that there is an effect of the treatment on the outcome after adjusting for the centre effect. We
will get, however, closer results (p = 0.02369 for the row mean squares test statistic) if we simply
remove the scores= option when calling SAS PROC FREQ [Stokes et al., 2012]:

PROC FREQ;
TABLES strata*group*change / noprint cmh2;

RUN;

In comparison, as noted by the authors, a Type III ANOVA would yield non-significant result about
the effect of drug on change scores.

m <- lm(change ~ group + strata, data = d)
car::Anova(m, type = "III")
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## Anova Table (Type III tests)
##
## Response: change
## Sum Sq Df F value Pr(>F)
## (Intercept) 176982 1 25.7904 9.499e-07 ***
## group 9602 1 1.3993 0.2384
## strata 8094 2 0.5898 0.5555
## Residuals 1228358 179
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.3 The Severe sepsis trial

Context. This is a placebo-controlled RCT examining the effect of an experimental drug on 28-
day all-cause mortality in patients with severe sepsis. Patients were allocated to one of four strata
depending on their APACHE II score [Knaus et al., 1985].

This is a classical application of stratified analysis of a binary outcome (dead/alive).

To enter the data in R, we will input individual values of the three-way Table of events as an array.
Note that it would also be possible to create two matrix objects and then bind into to a 3-dimensional
table. In what follows, we write data for the treated group first. Note that when using array, data
should be entered column-wise (there is no byrow = option as in matrix).

varnames <- list(strata = 1:4,
status = c("Dead", "Alive", "Total"),
group = c("Experimental", "Placebo"))

d <- array(c(33,49,48,80,185,169,156,130,218,218,204,210,
26,57,58,118,189,165,104,123,215,222,162,241),

dim = c(4,3,2), dimnames = varnames)

Note also that the third column (“Total”) can be safely omitted as margins can be computed auto-
matically with R, e.g.:

addmargins(d[,-3,], c(1,2))

d <- d[,-3,]
dim(d)

## [1] 4 2 2

An alternative representation of this array-based Table is provided by R’s flat tables (ftable), in
long or wide format; see Table 4 for the wide format using ftable(d, row.vars = 1, col.vars =
c(3,2)):

ftable(d)

## group Experimental Placebo
## strata status
## 1 Dead 33 26
## Alive 185 189
## 2 Dead 49 57
## Alive 169 165
## 3 Dead 48 58
## Alive 156 104
## 4 Dead 80 118
## Alive 130 123

The following code is used to depict the situation in graphical terms:

dd <- as.data.frame(ftable(d))
r <- ddply(dd, c("strata", "group"), mutate, prop = Freq/sum(Freq))

8



group: Experimental Placebo

strata status: Dead Alive Dead Alive

1 33 185 26 189
2 49 169 57 165
3 48 156 58 104
4 80 130 118 123

Table 4: 28-day mortality data from the 1690-patient sepsis study
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Figure 5: Proportion of patients who died by the end of the study

p <- ggplot(subset(r, status == "Dead"), aes(x = prop, y = group))
p <- p + geom_point() + facet_wrap(~ strata, nrow = 2)
p + scale_x_continuous(limits = c(0,0.5)) + labs(x = "Proportion deads", y = "")

library(vcd)
cotabplot(d, 1)

Based on a logistic regression model, the authors presented a summary of a Type III analysis of
effects. Here is what can be done in R. First, we will slightly re arrange the data table so that we
have a working data frame with total counts for success (here, dead patients) and failure (here,
patients still alive) in separate columns, together with columns describing strata and treatment
levels.

n <- rbind(d[,1:2,1], d[,1:2,2])
rownames(n) <- NULL
n <- as.data.frame(n)
n$strata <- gl(4, 1)
n$group <- gl(2, 4, labels = c("Experimental", "Placebo"))
n$group <- relevel(n$group, ref = "Placebo")

Then, wince we are working with grouped or aggregated data, we will use the cbind() option to
R’s glm, as shown below. Note that we also ask to use SAS treatment contrast for the strata factor,
in order to ensure that the fourth level is used as the reference category. Type III analysis is readily
available within the car package.

m <- glm(cbind(Dead,Alive) ~ group + strata, data = n, family = binomial,
contrasts = list(strata = "contr.SAS"))

car::Anova(m, type = "III")
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Figure 6: Conditional association plot

## Analysis of Deviance Table (Type III tests)
##
## Response: cbind(Dead, Alive)
## LR Chisq Df Pr(>Chisq)
## group 6.989 1 0.008201 **
## strata 105.609 3 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, profile likelihood 95% confidence intervals are simply obtained using confint() which will
call the appropriate profile method depending on the kind of model at hand.

exp(confint(m))

## 2.5 % 97.5 %
## (Intercept) 0.6412481 0.9318192
## group1 1.0392135 1.2965299
## strata1 0.1443251 0.2807120
## strata2 0.3048534 0.5420573
## strata3 0.3970567 0.7146984

1.4 The dose-finding hypertension trial

Context. This trial aimed to compare low, medium and high doses of a new antihypertensive drug
to a placebo. The primary efficacy variable that is being considered in this study is diastolic blood
pressure.

This example is used to illustrate various methods to deal with multiple testing issues. In what
follows we will work with p-values (raw data are not available) estimated when comparing all four
groups (P, placebo vs. L, M, and H, the low, medium and high dose groups).

The p.adjust() command can be used to compute various “adjusted” p-values, the default being
the step-down method proposed by Holm [1979].

pvals <- c(0.047, 0.0167, 0.015) ## scenario 1
p.adjust(pvals, method = "bonferroni")

## [1] 0.1410 0.0501 0.0450
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L vs. P M vs. P H vs. P

Scenario 1 0.047 0.0167 0.015
Scenario 2 0.047 0.027 0.015
Scenario 3 0.053 0.026 0.017

Table 5: P-values obtained from different approaches

The S̆idák method is not available in p.adjust() but it is not difficult to implement a custom func-
tion to perform this correction which amounts to update the nominal α level with 1 − (1 − α)1/n,
that is:

f <- function(x) (1-(1-x)^length(x))
f(pvals)

## [1] 0.13447682 0.04926799 0.04432838

Alternatively, one can dig into the multtest package by Dudoit and van der Laan [2008], available
on htpp://www.bioconductor.org) (see the mt.rawp2adjp() command).

Contrary to the preceding results, Holm’s adjusted p-values will all be < 0.05 as illustrated below:

p.adjust(pvals, method = "holm")

## [1] 0.047 0.045 0.045

And here is a comparison of Holm and Hommel’s adjusted p-values for the second scenario (Table 5):

pvals <- c(0.047, 0.027, 0.015) ## scenario 2
p.adjust(pvals, method = "holm")

## [1] 0.054 0.054 0.045

p.adjust(pvals, method = "hommel")

## [1] 0.0470 0.0470 0.0405

Finally, Hommel’s method is compared to Hochberg’s approach for the third scenario:

pvals <- c(0.053, 0.026, 0.017) ## scenario 3
p.adjust(pvals, method = "hochberg")

## [1] 0.053 0.052 0.051

p.adjust(pvals, method = "hommel")

## [1] 0.053 0.052 0.039

One can also look into the cherry package [Goeman and Solari, 2011] whose vignette includes a
comparison of Simes vs. Hommel or Fisher approach to multiple testing, as well as examples of
closed testing methods.

1.5 The allergen-induced asthma trial

Context. Data comes from a trial designed to assess the efficacy profile of a bronchodilator in
allergen-induced asthma. There are 20 patients that were randomly assigned to receive either an
experimental drug or a placebo [Taylor et al., 1991]. The forced expiratory volume in one second
(FEV) was used to measure how the drug attenuated bronchoconstriction, and FEV curves were
averaged at each time point in both groups (Table 6). The therapeutic effect was the time to the
onset of action–that is, the first time point at which clinically and statistically significant separation
between the FEV curves is observed.
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Beside stepwise approaches relying on data-driven ordering of p-values–this is also known as closed
testing–fixed-sequence testing methods are used when we are interested in prespecified sequences
of hypotheses. This is illustrated in the next example.

Experimental drug Placebo

Time (hours) n Mean SD n Mean SD

0.25 10 0.58 0.29 10 0.71 0.35
0.5 10 0.62 0.31 10 0.88 0.33
0.75 10 0.51 0.33 10 0.73 0.36

1 10 0.34 0.27 10 0.68 0.29
2 10 -0.06 0.22 10 0.37 0.25
3 10 0.05 0.23 10 0.43 0.28

Table 6: Reduction in FEV measurements from baseline by time after the allergen challenge

To load the data, we will use a simple matrix to store the values displayed in Table 6 and then
reshape the matrix to a “tidy” data frame using melt, although this last step is not really neces-
sary.

tmp <- matrix(c(0.25,10,0.58,0.29,10,0.71,0.35,
0.5,10,0.62,0.31,10,0.88,0.33,
0.75,10,0.51,0.33,10,0.73,0.36,
1,10,0.34,0.27,10,0.68,0.29,
2,10,-0.06,0.22,10,0.37,0.25,
3,10,0.05,0.23,10,0.43,0.28),
nrow = 6, byrow = TRUE)

colnames(tmp) <- c("time", "N0", "Mean0", "SD0", "N1", "Mean1", "SD1")
d <- melt(as.data.frame(tmp), id.vars = 1, measure.vars = c(3,4,6,7))

Note that it is quite easy to go back to the matrix form by using dcast as shown below:

r <- ddply(dcast(d, time ~ variable), "time", mutate,
diff = Mean1 - Mean0, se = sqrt((1/10+1/10)*(SD0^2+SD1^2)/2))

In what follows, we compute the lowest bound of a 95% confidence interval and display its value at
consecutive time points. This amounts to looking at results from sequential testing, i.e. determine
the first statistically significant difference. Equivalently, we could rely on simple Student t-test.

p <- ggplot(r, aes(x = time, y = diff))
p <- p + geom_line() + geom_point()
p <- p + geom_line(aes(x = time, y = diff - qt(0.95, 20-2) * se), linetype = 2)
p <- p + scale_x_continuous(breaks = seq(0, 3, by = 1))
p <- p + scale_y_continuous(breaks = seq(-0.2, 0.5, by = 0.1))
p <- p + geom_hline(aes(yintercept = 0))
p + labs(x = "Time (hours)", y = "Treatment difference (95% Lower CI)")

Note that to display error bars instead of the lower bound for the 95% confidence interval, we would
use:

p <- p + geom_errorbar(aes(ymin = diff - qt(0.975, 20-2) * se,
ymax = diff + qt(0.975, 20-2) * se),

width = .1)

This approach, however, does not control the familywise error rate. Looking at treatment differ-
ences from the last measurement to the first (“step-down” approach) suggests that a significant
difference at one hour, and not 30 minutes as in the previous case.
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Figure 7: Treatment comparisons in the asthma study
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