
Introduction to R
May 2019

This introduction to the R language aims at understanding how to represent
and manipulate data objects as commonly found in data science, to provide
basic summary statistic and to build relevant graphical representation of the
data [1].

Important notice: Only base commands are discussed here, not the tidy-
verse. A separate cheatsheet is available for the ggplot2 package.

1 Installing R and RStudio

The R statistical package can be installed from CRAN. Be sure to also down-
load RStudio as it provided a full-featured user interface to interact with R. To
use Jupyter notebook, you will also need the IR kernel.

1.1 Useful additional packages

This tutorial mainly relies on core facilities that come along so called R base
packages. However, it is possible to install additional packages and, in partic-
ular, the ggplot2 package, as shown below:

install.packages("ggplot2")

1.2 Setup

The following setup will be used for graphical displays:

library(ggplot2)
theme_set(theme_minimal())

Note that you need to load the ggplot2 package only once, at the start of
your R session.

2 Getting started

2.1 Variables

There are fundamentally two kind of data structures in statistics-oriented
programming languages: numbers and strings. Numbers can be integers or
real numbers and they are used to represent values observed for a continuous
or discrete statistical variable, while strings are everything else that cannot be
represented as numbers or list of numbers, e.g. address of a building, answer
to an open-ended question in a survey, etc.

Here is how we can create a simple variable, say x, to store a list of 5 nu-
merical values:

https://www.tidyverse.org/
https://www.tidyverse.org/
https://ggplot2.tidyverse.org/
https://cran.r-project.org/
https://www.rstudio.com/
https://irkernel.github.io/
https://stackoverflow.com/a/9705725
https://stackoverflow.com/a/9705725
https://ggplot2.tidyverse.org/

introduction to r 2

x <᫲ c(1, 3, 2, 5, 4)

Note that the symbol <᫲ stands for the recommended assignment operator,
yet it is possible to use = to assign some quantity to a given variable, which
appears on the left hand side of the above expression. Also, the series of values
is reported between round brackets, and each values is separated by a comma.
From now on, we will talk interchangeably of values or of observations as if
we were talking of a measure collected on a statistical unit.

Some properties of this newly created variable can be queried online, e.g.
how many elements does x has or how those elements are represneted in R:

length(x)
typeof(x)

[1] 5

[1] "double"

It should be noted that x contains values stored as real numbers (double)
while they may just be stored as integers. It is however possible to ask R to use
truly integer values:

x <᫲ c(1L, 3L, 2L, 5L, 4L)
typeof(x)

[1] "integer"

The distinction between 32 bits integers and reals will not be that impor-
tant in common analysis tasks, but it is important to keep in mind that it is
sometimes useful to check whether data are represented as expected, espe-
cially in the case of categorical variables, also called ’factor’ in R parlance
(more on this latter).

The list of numbers we stored in x is called a vector, and it is one of the
building block of common R data structures. Oftentimes, we will need richer
data structures, especially two-dimensional objects, like matrix or data frame,
or higher-dimensional objects such as array or list.

Figure 1: Common data structures in R

introduction to r 3

2.2 Vectors

The command c (’concatenate’) we used to create our list of integers will be
very useful when it comes to pass multiple options to a command. It can be
nested into another call to c like in the following example:

x <᫲ c(c(1, 2, 3), c(4, 5, 6), 7, 8)

In passing, note that since we use the same name for our newly created
variable, x, the old content referenced in x (1, 3, 2, 5, 4) is definitively lost.
Once you have a vector of values, you can access each item by providing the
(one-based) index of the item(s), e.g.:

x[1]
x[3]
x[c(1,3)]
x[1:3]

[1] 1

[1] 3

[1] 1 3

[1] 1 2 3

A convenient shorhand notation for regular sequence of integers is
start:end, where start is the starting value and end is the last value (both
included). Hence, c(1,2,3,4) is the same as 1:4. This is useful when one wants
to preview the first 3 or 5 values in a vector, for example. A more general
function to work with regular sequence of numbers is seq. Here is an example
of use:

seq(1, 10)
seq(1, 10, by = 2)
seq(0, 10, length = 5)

[1] 1 2 3 4 5 6 7 8 9 10

[1] 1 3 5 7 9

[1] 0.0 2.5 5.0 7.5 10.0

Updating content of a vector can be done directly by assigning a new value
to one of the item:

x[3] <᫲ NA

introduction to r 4

In the above statement, the third item has been assigned a missing value,
which is coded as NA (’not available’) in R. Again, there is no way to go back to
the previous state of the variable, so be careful when updating the content of a
variable.

The presence of missing data is important to check before engaging into
any serious statistical stuff. The is.na function can be used to check for the
presence of any missing value in a variable, while which will return the index
that matches a TRUE result, if any:

is.na(x)
which(is.na(x))

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

[1] 3

Notice that many functions like is.na, or which, act in a vectorized way,
meaning that you don’t have to iterate manually over each item in the vector.
Moreover, function calls can be nested one into the other. In the latter R
expression, which is actually processing the values returned by the call to is.na.

2.3 Vectors and random sampling

The sample function allows to randomly shuffle an existing vector or to gen-
erate a sequence of random numbers. Whenever we rely on the random
number generator (RNG), it is recommend to set the seed of the RNG in or-
der to ensure that those pseudo-random sequence could be reproduced later.
Here is an illustration:

s <᫲ c(1, 4, 2, 3, 8)
sample(s)

[1] 2 3 1 8 4

sample(1:10, size = 5)
sample(0:1, size = 10, replace = TRUE)

[1] 5 6 10 8 4

[1] 1 1 1 1 1 1 1 0 0 1

In summary, sample(1:n, size = n) returns a permutation of the n ele-
ments, while sample(1:n, size = n, replace = TRUE) provides a bootstrap
sample of the original data.

introduction to r 5

2.4 Sorting

Sorting a list of values or finding the index or rank of any value in a vector
are common tasks in statistical programming. It is different from computing
ranks of observed values, which is handled by the rank function. The two
main instructions to sort a list of values and to get the index of the sorted item
are sort and order, respectively:

z <᫲ c(1, 6, 7, 2, 8, 3, 9, 4, 5)
sort(z)
order(z)

[1] 1 2 3 4 5 6 7 8 9

[1] 1 4 6 8 9 2 3 5 7

2.5 Data frames

Data frames are one of the core data structures to store and represent sta-
tistical data. Many routine functions that are used to load data stored in flat
files or databases or to preprocess data stored in memory rely on data frames.
Likewise, graphical commands such as those found in the ggplot2 package
generally assumes a data frame as input. The same applies to functions used
in statistical modeling (lm, glm, etc.).

In a data frame, observations are arranged in rows and variables are ar-
ranged in columns. Each variable can be viewed as a single vector, but
those variables are all recorded into a common data structure, each with
an unique name. Moreover, each column, or variable, can be of a different
type–numeric, factor, character or boolean, which makes data frame slightly
different from ’matrix’ object where only values of the same type can be
stored.

Here is an example of a built-in data frame, readily available by using the
command data:

data(ToothGrowth)
head(ToothGrowth)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5
4 5.8 VC 0.5
5 6.4 VC 0.5
6 10.0 VC 0.5

introduction to r 6

str(ToothGrowth)

'data.frame': 60 obs. of 3 variables:
$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
$ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...

While head allows to preview the first 6 lines of a data frame, str provides
a concise overview of what’s available in the data frame, namely: the name of
each variable (column), its mode of representation, et the first 10 observations
(values).

The dimensions (number of lines and columns) of a data frame can be
verified using dim (a shortcut for the combination of nrows and ncols):

dim(ToothGrowth)

[1] 60 3

To access any given cell in this data frame, we will use the indexing trick
we used in the case of vectors, but this time we have to indicate the line num-
ber as well as the column number, or name: Hence, ToothGrowth[i,j]means
the value located at line i and column j, while ToothGrowth[c(a,b),j] would
mean values at line a and b for the same column j.

Figure 2: Representation of a data frame in
R

Here is how we can retrieve the second observation in the first column:

ToothGrowth[2,1]

[1] 11.5

Since the columns of a data frame have names, it is equivalent to use
ToothGrowth[2,1] and ToothGrowth[2,"len"]. In the latter case, variable names

introduction to r 7

must be quoted. Column names can be displayed using colnames or names (in
the special case of data frames), while row names are available via rownames.
Row names can be used as unique identifier for statistical units, but best prac-
tice is usually to store unique IDs as characters or factor levels in a dedicated
column in the data frame.

Since we know that we can use c to create a list of numbers, we can use
c to create a list of line numbers to look for. Imagine you want to access the
content of a given column (len, which is the first column, numbered 1), for
lines 2 and 4: (c(2, 4)):

Figure 3: Vector indexing

Here is how we would do in R:

ToothGrowth[c(2,4),1]

[1] 11.5 5.8

This amounts to ’indexed selection’, meaning that we need to provide
the row (or column) numbers, while most of the time we are interested in
criterion-based indexation, that is: ”which observation fullfills a given crite-
rion.” We generally call this a ’filter’. Since most R operations are vectorized,
this happens to be really easy. For instance, to display observations on supp
that satisfy the condition len > 6, we would use:

head(ToothGrowth$supp[ToothGrowth$len > 6])

[1] VC VC VC VC VC VC
Levels: OJ VC

Likewise, it is possible to combine different filters using logical operators:
& stands for ’and’ (logical conjunction) and | stands for ’or’ (logical disjonc-
tion); logical equality is denoted as ᫁᫂ while its negation reads ᫏᫂. Here is an

introduction to r 8

Figure 4: Selecting elements in a data frame

Figure 5: Using filters on a data frame

introduction to r 9

example where we want to select observations that satisfy a given condition
on both the dose (dose = 0.5) and len (len > 10) variables:

In R, we would write:

ToothGrowth[ToothGrowth$len > 10 & ToothGrowth$dose < 1,]

len supp dose
2 11.5 VC 0.5
7 11.2 VC 0.5
8 11.2 VC 0.5
31 15.2 OJ 0.5
32 21.5 OJ 0.5
33 17.6 OJ 0.5
35 14.5 OJ 0.5
39 16.5 OJ 0.5

You will soon realize that for complex queries this notation become quite
cumbersome: all variable must be prefixed by the name of the data frame,
which can result in a very long statement. While it is recommended practice
for programming or when developing dedicated package, it is easier to rely
on subset in an interactive session. The subset command asks for three argu-
ments, namely the name of the data frame we are working on, the rows we
want to select (or filter), and the columns we want to return. The result of a
call to subset is always a data frame.

Figure 6: Subsetting a data frame by row
and column

Here is an example of use:

subset(ToothGrowth, len > 10 & dose < 1)

len supp dose
2 11.5 VC 0.5
7 11.2 VC 0.5
8 11.2 VC 0.5
31 15.2 OJ 0.5
32 21.5 OJ 0.5
33 17.6 OJ 0.5
35 14.5 OJ 0.5
39 16.5 OJ 0.5

introduction to r 10

Figure 7: Subsetting a data frame: Illustra-
tion of joint filters

It is also possible to use the technique discussed in the case of vectors to
sort a data frame in ascending or descending order according to one or more
variables. Here is an example using the len variable:

head(ToothGrowth)
head(ToothGrowth[order(ToothGrowth$len),])

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5
4 5.8 VC 0.5
5 6.4 VC 0.5
6 10.0 VC 0.5

len supp dose
1 4.2 VC 0.5
9 5.2 VC 0.5
4 5.8 VC 0.5
5 6.4 VC 0.5
10 7.0 VC 0.5
3 7.3 VC 0.5

The which function can also be used to retrieve a specific observation in a
data frame, like in the following instruction:

which(ToothGrowth$len < 8)

[1] 1 3 4 5 9 10

3 Statistical summaries

As explained above, the str function is useful to check a given data struc-
ture, and individual properties of a data frame can be queried using dedi-
cated functions, e.g. nrow or ncol. Now, to compute statistical quantities on

introduction to r 11

a variable, we can use dedicated functions like mean (arithmetical mean), sd
(standard deviation; see also var), IQR (interquartile range), range (range of
values; see also min and max), or the summary function, which computes a five-
point summary in the case of a numerical variable or a table of counts for
categorical outcomes.

3.1 Univariate case

Here are some applications in the case we are interested in summarizing one
variable at a time:

mean(ToothGrowth$len)
range(ToothGrowth$len)
c(min(ToothGrowth$len), max(ToothGrowth$len))
table(ToothGrowth$dose)

[1] 18.81333

[1] 4.2 33.9

[1] 4.2 33.9

0.5 1 2
20 20 20

summary(ToothGrowth)
Of course, the above functions can be applied to a subset of the original

data set:

mean(ToothGrowth$len[ToothGrowth$dose ᫁᫂ 1])
table(ToothGrowth$dose[ToothGrowth$len < 20])

[1] 19.735

0.5 1 2
19 11 1

3.2 Bivariate case

If we want to summarize a numerical variable according the values that a
factor variable takes, we can use tapply or aggregate. The latter expects a
’formula’ describing the relation between the variables we are interested in:
the response variable or outcome appears on the left-hand side (LHS), while
the factors or descriptors are listed in the right-hand side (RHS). The last
argument to aggregate is the function we want to apply to each chunk of
observations defined by the RHS. Here is an example of use:

introduction to r 12

aggregate(len ~ dose, data = ToothGrowth, mean)
aggregate(len ~ supp + dose, data = ToothGrowth, mean)

dose len
1 0.5 10.605
2 1.0 19.735
3 2.0 26.100

supp dose len
1 OJ 0.5 13.23
2 VC 0.5 7.98
3 OJ 1.0 22.70
4 VC 1.0 16.77
5 OJ 2.0 26.06
6 VC 2.0 26.14

Note that only one function can be applied to the ’formula’. Even if it
possible to write a custom function that computes the mean and standard
deviation of a variable, both results will be returned as single column in the
data frame returned by aggregate. There do exist other ways to perform such
computation, though (see, e.g., the plyr, dplyr or Hmisc packages, to name a
few), if the results are to be kept in separate variables for later. This, however,
does not preclude from using aggregate for printing multivariate results in the
console:

aggregate(len ~ dose, data = ToothGrowth, summary)
f <᫲ function(x) c(mean = mean(x), sd = sd(x))
aggregate(len ~ dose, data = ToothGrowth, f)

dose len.Min. len.1st Qu. len.Median len.Mean len.3rd Qu. len.Max.
1 0.5 4.200 7.225 9.850 10.605 12.250 21.500
2 1.0 13.600 16.250 19.250 19.735 23.375 27.300
3 2.0 18.500 23.525 25.950 26.100 27.825 33.900

dose len.mean len.sd
1 0.5 10.605000 4.499763
2 1.0 19.735000 4.415436
3 2.0 26.100000 3.774150

The table functions also works with two (or even three) variables:

table(ToothGrowth$dose, ToothGrowth$supp)

OJ VC
0.5 10 10
1 10 10
2 10 10

introduction to r 13

If formulas are to be preferred, the xtabs function provides a convenient
replacement for table:

xtabs(~ dose + supp, data = ToothGrowth)

supp
dose OJ VC

0.5 10 10
1 10 10
2 10 10

In either case, frequencies can be computed from the table of counts using
prop.table, using the desired margin (row=1, column=2) in the bivariate case:

prop.table(table(ToothGrowth$dose))
prop.table(table(ToothGrowth$dose, ToothGrowth$supp), margins = 1)

0.5 1 2
0.3333333 0.3333333 0.3333333

Erreur dans prop.table(table(ToothGrowth$dose, ToothGrowth$supp), margins = 1) :
argument inutilisé (margins = 1)

4 Practical use case: The ESS survey

The data directory includes three RDS files related to the European Social Sur-
vey (ESS). This survey first ran in 2002 (round 1), and it is actually renewed
every two years. The codebook can be downloaded, along other data sheets,
on the main website.

There are two files related to data collected in France (round 1 or rounds
1-5, ess-*-fr.rds) and one file for all participating countries (ess-one-
round.rds). French data

Assuming the data directory is available in the current working directory,
here is how we can load French data for round 1:

WD <᫲ "."
filepath <᫲ paste0(WD, "/data/ess-one-round-fr.rds")
d <᫲ readRDS(filepath)
head(as.data.frame(d[1:10]))

name essround edition proddate cntry idno tvtot tvpol rdtot rdpol
1 ESS1e06_6 1 6.6 01.12.2018 FR 10001 3 2 1 0
2 ESS1e06_6 1 6.6 01.12.2018 FR 10002 4 3 2 2
3 ESS1e06_6 1 6.6 01.12.2018 FR 10003 0 NA 7 4

https://www.rdocumentation.org/packages/base/versions/3.5.3/topics/readRDS
https://www.europeansocialsurvey.org/
https://www.europeansocialsurvey.org/
http://www.europeansocialsurvey.org/data/download.html
data/ess-one-round.rds
data/ess-one-round.rds

introduction to r 14

4 ESS1e06_6 1 6.6 01.12.2018 FR 10004 5 2 1 0
5 ESS1e06_6 1 6.6 01.12.2018 FR 10005 2 2 0 NA
6 ESS1e06_6 1 6.6 01.12.2018 FR 10006 3 2 0 NA

table(d$yrbrn)

1905 1909 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
1 1 2 3 1 3 3 3 1 2 4 9 10 13 10 9 14 15 10 22

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
13 18 17 16 22 21 19 23 17 22 14 21 14 28 21 23 18 20 30 30

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
18 28 24 31 25 29 17 30 29 20 20 16 22 25 37 19 28 34 32 27

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
30 28 35 30 21 29 23 25 23 23 25 27 23 27 14 20 20 16 5 5

summary(d$agea)

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.00 32.00 46.00 47.32 61.00 98.00

Let us focus on the following list of variables, readily available in the file
ess-one-round-29vars-fr.rds:

• tvtot: TV watching, total time on average weekday

• rdtot: Radio listening, total time on average weekday

• nwsptot: Newspaper reading, total time on average weekday

• polintr: How interested in politics

• trstlgl: Trust in the legal system

• trstplc: Trust in the police

• trstplt: Trust in politicians

• vote: Voted last national election

• happy: How happy are you

• sclmeet: How often socially meet with friends, relatives or colleagues

• inmdisc: Anyone to discuss intimate and personal matters with

• sclact: Take part in social activities compared to others of same age

• health: Subjective general health

• ctzcntr: Citizen of country

data/ess-one-round-29vars-fr.rds

introduction to r 15

• brncntr: Born in country

• facntr: Father born in country

• mocntr: Mother born in country

• hhmmb: Number of people living regularly as member of household

• gndr: Gender

• yrbrn: Year of birth

• agea: Age of respondent, calculated

• edulvla: Highest level of education

• eduyrs: Years of full-time education completed

• pdjobyr: Year last in paid job

• wrkctr: Employment contract unlimited or limited duration

• wkhct: Total contracted hours per week in main job overtime excluded

• marital: Legal marital status

• martlfr: Legal marital status, France

• lvghw: Currently living with husband/wife

4.1 Recoded French data

Note that variables in the file ess-one-round-29vars-fr.rds have been recoded
and categorical variables now have proper labels. See the script file ess-one-
round-29vars-fr.r to see what has been done to the base file.

filepath <᫲ paste0(WD, "/data/ess-one-round-29vars-fr.rds")
d29 <᫲ readRDS(filepath)
head(d29)

tvtot rdtot nwsptot polintr
1 More than 1 hour, up to 1,5 hours Less than 0,5 hour No time at all Not at all interested
2 More than 1,5 hours, up to 2 hours 0,5 hour to 1 hour Less than 0,5 hour Hardly interested
3 No time at all More than 3 hours 0,5 hour to 1 hour Not at all interested
4 More than 2 hours, up to 2,5 hours Less than 0,5 hour No time at all Quite interested
5 0,5 hour to 1 hour No time at all No time at all Hardly interested
6 More than 1 hour, up to 1,5 hours No time at all Less than 0,5 hour Quite interested

trstlgl trstplc trstplt vote happy sclmeet inmdisc sclact
1 6 8 5 <NA> 10 <NA> Yes About the same
2 5 3 3 Yes 10 Every day Yes About the same

data/ess-one-round-29vars-fr.rds
scripts/ess-one-round-29vars-fr.r
scripts/ess-one-round-29vars-fr.r

introduction to r 16

3 5 No trust at all No trust at all Yes 3 Every day Yes About the same
4 5 3 3 Yes 6 Once a month Yes Less than most
5 5 8 No trust at all <NA> 10 Several times a week No More than most
6 7 8 7 <NA> 5 Never Yes About the same

health ctzcntr brncntr facntr mocntr hhmmb gndr yrbrn agea
1 Good No No No Yes 2 Female 1940 63
2 Good Yes Yes Yes Yes 2 Male 1967 36
3 Very good Yes Yes No Yes 5 Male 1967 36
4 Fair Yes Yes Yes Yes 1 Female 1926 77
5 Fair Yes No No No 3 Female 1921 82
6 Fair Yes Yes Yes Yes 2 Male 1951 52

edulvla eduyrs pdjobyr wrkctr wkhct marital martlfr
1 Less than lower secondary education (ISCED 0-1) 10 1997 <NA> 35 <NA> Married
2 Upper secondary education completed (ISCED 3) 12 NA <NA> 35 <NA> Married
3 Upper secondary education completed (ISCED 3) 20 NA <NA> NA <NA> Married
4 Less than lower secondary education (ISCED 0-1) 8 1974 <NA> 25 <NA> Widowed
5 Less than lower secondary education (ISCED 0-1) 0 NA <NA> NA <NA> Widowed
6 Upper secondary education completed (ISCED 3) 17 2001 <NA> 48 <NA> Separated

lvghw
1 Yes
2 Yes
3 Yes
4 <NA>
5 <NA>
6 <NA>

First, let us look at the distribution of the gndr variable, using a simple bar
chart:

summary(d29$gndr)

Male Female
679 824

p <᫲ ggplot(data = d29, aes(x = gndr)) +
geom_bar() +
labs(x = "Sex of respondant", y = "Counts")

p

introduction to r 17

Now, let’s look at the distribution of age. The ggplot2 package offers a
geom_density function but it is also possible to draw a line using the pre-
computed empirical density function, or to let ggplot2 compute the density
function itself using the stat= option. Here is how it looks:

summary(d29$agea)

Min. 1st Qu. Median Mean 3rd Qu. Max.
15.00 32.00 46.00 47.32 61.00 98.00

p <᫲ ggplot(data = d29, aes(x = agea)) +
geom_line(stat = "density", bw = 2) +
labs(x = "Age of respondant")

p

introduction to r 18

The distribution of age can also be represented as an histogram, and gg-
plot2 makes it quite easy to split the display depending on the sex of the
respondants, which is called a ’facet’ in ggplot2 parlance:

p <᫲ ggplot(data = d29, aes(x = agea)) +
geom_histogram(binwidth = 5) +
facet_grid(~ gndr) +
labs(x = "Age of respondant")

p

introduction to r 19

Finally, a boxplot might also be an option, especially when we want to
compare the distribution of a numerical variable across levels of a categorical
variable. The coord_flip instruction is used to swap the X and Y axes, but keep
in mind that x= and y= labels still refer to the x and y variable defined in the
aes:

p <᫲ ggplot(data = d29, aes(x = gndr, y = agea)) +
geom_boxplot() +
coord_flip() +
labs(x = NULL, y = "Age of respondants")

p

introduction to r 20

Sidenote: In the above instructions, we used the following convention to
build a ggplot2 object:

• we assign to a variable, say p, the call to ggplot2 plus any further instruc-
tions (’geom’, ’scale’, ’coord_’, etc.) using the + operator;

• we use only one aes structure, when calling ggplot, so that it makes it clear
what are the data and what variables are used;

• we display the graph at the end, by simpling calling our variable p.

Yet, it is possible to proceed in many different ways, depending on your
taste and needs. The following instructions are all valid expressions and will
yield the same result:

ggplot(data = d29, aes(x = gndr, y = agea, color = vote)) + geom_boxplot()

p <᫲ ggplot(data = d29, aes(x = gndr, y = agea, color = vote))
p <᫲ p + geom_boxplot() + labs(x = "Gender")
p

p <᫲ ggplot(data = d29, aes(x = gndr, y = agea))
p + geom_boxplot(aes(color = vote)) + labs(x = "Gender")

Moreover, it is also possible to use the quick one-liner version of ggplot,
namely qplot:

introduction to r 21

qplot(x = gndr, y = agea, data = d29, color = vote, geom = "boxplot") + labs(x = "Gender")

or even:

qplot(x = gndr, y = agea, data = d29, color = vote, geom = "boxplot", xlab = "Gender")

Further details are available in the handout lang-r-ggplot.

4.2 Data from other countries

Data from all other participating countries can be loaded in the same manner:

filepath <᫲ paste0(WD, "/data/ess-one-round.rds")
db <᫲ readRDS(filepath)
cat("No. observations =", nrow(db), "\n")
table(db$cntry)

observations = 40856

AT BE CH CZ DE DK ES FI GB GR HU IE IL IT LU NL NO PL PT SE
2257 1899 2040 1360 2919 1506 1729 2000 2052 2566 1685 2046 2499 1207 1552 2364 2036 2110 1511 1999

SI
1519

Since French data are (deliberately) missing from this dataset, we can
append them to the above data frame as follows:

db <᫲ rbind.data.frame(db, d)
cat("No. observations =", nrow(db), "\n")

observations = 42359

db$cntry <᫲ factor(db$cntry)
table(db$cntry)

AT BE CH CZ DE DK ES FI FR GB GR HU IE IL IT LU NL NO PL PT
2257 1899 2040 1360 2919 1506 1729 2000 1503 2052 2566 1685 2046 2499 1207 1552 2364 2036 2110 1511

SE SI
1999 1519

Remember that is also possible to use summary with a factor variable to
display a table of counts.

In this particular case, we are just appending a data frame to another data
frame already loaded in memory. This assumes that both share the name
columns, of course. Sometimes, another common operation might be per-
formed, an ’inner join’ between two data tables. For example, imagine that

./lang-r-ggplot.html

introduction to r 22

part of the information is spread out in one data frame, and the rest of the
data sits in another data frame. If the two data frames have a common unique
ID, it is then easy to merge both data frames using the merge command. Here
is a simplified example using the above data, that we will split in two before-
hand:

db$id <᫲ 1:nrow(db)
db1 <᫲ db[,c(1:10,ncol(db))]
db2 <᫲ db[,c(11:(ncol(db)-1),ncol(db))]
all <᫲ merge(db1, db2, by = "id")

In case the unique ID is spelled differently in the two data frames, it is
possible to replace by with by.x and by.y. Notice that we created a column
to store the unique ID (as an integer), since it would be more difficult to use
rownames as the key.

References

[1] R. Ihaka and R. Gentleman. “R: A Language for Data Analysis and
Graphics”. In: Journal of Computational and Graphical Statistics 5.3
(1996), pp. 299–314.

introduction to r 23

Contents

1 Installing R and RStudio 1

1.1 Useful additional packages 1

1.2 Setup 1

2 Getting started 1

2.1 Variables 1

2.2 Vectors 3

2.3 Vectors and random sampling 4

2.4 Sorting 5

2.5 Data frames 5

3 Statistical summaries 10

3.1 Univariate case 11

3.2 Bivariate case 11

4 Practical use case: The ESS survey 13

4.1 Recoded French data 15

4.2 Data from other countries 21

	Installing R and RStudio
	Getting started
	Statistical summaries
	Practical use case: The ESS survey

