
RNA-Seq Workshop

Introduction

Overall, RNA-Seq analysis consists in a series of extraction, preprocessing and statistical analysis
(Fig. 1):

1. DNA extraction from a sample
2. DNA sequencing
3. Alignment of sequencing reads to a reference genome
4. Basic exploratory data analysis
5. Identification of genomic variants (SNPs, small insertions and deletions)
6. Gene quantification (i.e., statistics on count data)

This tutorial starts from step 3, and we will skip step 5, which is covered in another tutorial (using
mpileup and varscan). A typical workflow will take 4-6 hours, most of this time being specnt in file
generation and exploratory data analysis. Indeed, whether data processing is done in Galaxy or at the
command-line, a lot of the above steps require converting file from one format to the other, sorting
data according to genomic coordiantes and creating index file to ease the processing of the data file.
For instance, an SRA file has to be converted to a Fastq file and a pseudo-alignment BAM file needs to
be indexed: while the later will run under 3 minutes, the former takes a much longer time. Likewise,
soritng a SAM or BAM file may be quite time consuming for large files.

Some reviews of best practices are available (Conesa et al. 2016; Yendrek, Ainsworth, and Thimmapu-
ram 2012). Regarding statistical software, the state of the art is described on the Bioconductor project
(Korpelainen et al. 2015; Anders et al. 2013).
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Figure 1
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Applications

Preprocessing (readmapping)

Kallisto + DESeq2

Whether we use Galaxy or the command-line, we basically need two kind of files: a reference genome
(Fasta) and Fastq or sra reads files. If reads are in SRA format, they need to be converted to Fastq
format using the sratoolkit. For gene quantification using DESeq2, we will further need annotation
as a GFF or GFF3 file.

Kallisto will produce counts and TPM values in a TSV file (as well as an HDF5 file). Here is an example
of Kallisto output:

1 target_id length eff_length est_counts tpm
2 jgi|Podans1|100005|CE99640_2373 1994 1895 1407 51.6298
3 jgi|Podans1|100060|CE99695_1372 3146 3047 504 11.502
4 jgi|Podans1|10015|CE9650_8706 1582 1483 1156 54.2042

Note that transcript ID (taken from the reference genome, >jgi|Podans1|100005|CE99640_2373)
should correspond to gene ID in the annotation file, which actually reads:

1 ##gff-version 3
2 -%<-----
3 38763:scaffold_3 prediction gene 644807 646915 0 + . ID=

gene_5098;Name=jgi.p|Podans1|99641;portal_id=Podans1;product_name=
Cytochrome P450;proteinId=99641;transcriptId=100005

4 38764:scaffold_3 prediction mRNA 644807 646915 . + . ID=
mRNA_5098;Name=jgi.p|Podans1|99641;Parent=gene_5098;proteinId=99641;
track=FilteredModels1;transcriptId=100005

In this case, this means that the transcript ID 100005 is found in unexpected place: when using Galaxy,
you will have to update the corresponding ID.1

Basically, NGS analyses (RNA, CHIP, etc.) need to account for within-group variance estimates when
analysing lot of genes, hence the need to pool information across genes. The DESeq approach detects
and corrects dispersion estimates that are too low through modeling of the dependence of the disper-
sion on the average expression strength over all samples. In addition, it provides a novel method for
gene ranking and the visualization of stable estimates of effect sizes (Love, Huber, and Anders 2014).
The DESeq2 package further includes shrunken fold changes (with SE).

1An R script can be used to process the original GFF file and update ID so that they match each other.
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We need two data frames before running the statistical analysis: a table of counts (or TPM values from
kallisto or salmon), and a table describing the experimental condition. Note that each runmust
come as triplicate. Here are the basic steps to import counts data and setup the design matrix:

1 library("DESeq2")
2 library("tximport")
3 datadir <- dir(".", pattern = "out.\\.*")
4 files <- file.path(datadir, "abundance.h5")
5 names(files) <- gsub("out.", "", datadir)
6 samples <- data.frame(run = names(files), condition = c("4h", "48h", "

24h"))
7 txi <- tximport(files, "kallisto", txOut = TRUE)
8 dds <- DESeqDataSetFromTximport(txi, colData = samples, design = ~

condition)

TopHat + HTSeq (or FeatureCounts)

This workflow usually takes a longer time but TopHat has the advantage of being aware of splice
junction (in fact, this is what TopHat really adds to bowtie).

Statistical analysis of count data

Sanity checking

Twopreprocessing stages areworth considering before dwelling into gene quantification per se: quality
control and normalization. Quality control amounts to controlling the number of genes having non-
zero counts in all samples. If this number is very low, it is likely that something went wrong, at least
with some of the samples. Based on the DESeq table of counts, we can proceed as follows in R:

1 gene_counts <- counts(dds)
2 counts_per_sample <- apply(gene_counts, 1, function(x) all(x) > 0)
3 cat(sum(counts_per_sample), "out of", nrow(dds), "\n")

Normalization refers to the comparison of size factors defined as the median of ratios of each sample
to a virtual reference sample (median of each gene’s values across samples). Those ratios are expected
to match the ratios of the library sizes and be roughly equal to one. Dividing each column of the count
table by the corresponding size factor yields normalized count values, which can be scaled to give a
counts per million interpretation. Note that this is different from the approach taken by edgeR, which
considers the trimmedmean of M values.
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The MA plot shows the average vs mean–difference of log fold change, centered around 0, and it is
expected to observe higher variability of log ratios at lower counts.

Sample clustering

A PCA or simple heatmap of the results of hierarchical clustering of the sample data can be used to
assess overall similarity between samples. We expect triplicate to cluster together while samples
from very different experimental conditions are expected to be far away one from the other. Of note,
it is useful to apply a regularized log–transformation on the raw counts to avoid the impact of few
highly variale genes, hence considering a roughly equal contribution from all genes. For genes with
high counts, this mostly resembles a log2 transformation, whereas for genes with low counts, this
shrunkens values toward gene’s average across amples. It is important to note that this is only for
exploratory analysis; for statistical modeling, raw counts should be preferred since DESeq will handle
appropriate correction automagically.

1 rld <- rlogTransformation(dds, blind = TRUE)
2 dd <- as.matrix(dist(t(assay(rld))))
3 library(pheatmap)
4 pheatmap(dd)
5 plotPCA(rld, intgroup = c("condition"))

Differential analysis

The statistical model underlying differential analysis of count data is a Negative Binomial, which
contrary to the standard Poissonmodel allows to account for overdispersion (i.e., variance greater than
mean). Variance is modeled as 𝕍[𝑁𝐵(𝜇, 𝛼)] = 𝜇 + 𝛼𝜇2, and the very first step in differential analysis
is to get an estimate of the dispersion parameter for each gene (independent of the condition, which is
sensible since there is usually a low number of replicates). Notice that for genes with very low read
counts, the large amount of Poisson noise prevent those genes fromexhibiting any DE at all, and DESeq
performs independent filtering automatically to discard such low signals and to increase statistical
power for the remaining gene candidates. The asymptotic dispersion for highly expressed genes can
be seen as a measurement of biological variability in the sense of a squared coefficient of variation: a
dispersion value of 0.01 means that the gene’s expression tends to differ by typically

√
0.01 = 10%

between samples of the same treatment group. The R procedure estimateDispersions allows to
compute (and visualize) dispersion estimates as a function of mean normalized counts.

The statistical test used to assesswhether genes are differentially expressed between samples is aWald
test (nbinomWaldTest), with FDR correction for multiple testing. Benjamini–Hochberg’s adjusted
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p-values can then be ranked to highlight the top genes. Usually, the statistical threshold is set at 0.1,
and not 0.05 as in standard null hypothesis statistical testing.

1 ddstab <- estimateDispersions(estimateSizeFactors(dds))
2 r <- results(nbinomWaldTest(ddstab), pAdjustMethod = "BH")
3 table(r$padj < 0.1)
4 ## r@metadata$filterThreshold

The inspection of the distribution of (unadjusted) p-values is helpful to verify that the null distribution
for the test statistic is viable. If the histogram does not exhibit an uniform pattern (e.g., U or hill shape),
then it is likely that the 𝒩(0, 1) null distribution is not appropriate.2

Once the model is fitted, it is possible to extract the top genes using, e.g.:

1 plotMA(r)
2 names(dds)[which(r$padj < 0.1)]

Gene ontology and annotation

This is beyond the scope of this tutorial, but the genefilter package can be used to send queries about
specific gene sets, or it is possible to use the online DAVID package.

Appendix

File Formats

Fasta files contain nucleotide or aa, with a description line (the symbol > followed by the sequence
identifier and other (optional) information, also called comment). File extension is usually .fasta,
.fa, or .faa (amino acid) and .fna (nucleotides).

Most bioinformatics software allow to read Fasta file in an efficient manner. Don’t try to write your own
reader unless you know what you are doing. E.g., in Python, you can use the BioPythonmodule:

1 from Bio import SeqIO
2
3 records = list(SeqIO.parse("sordariales-all.fa", 'fasta'))

Fastq files are like Fasta file (header = @ followed by sequence ID) but with the corresponding quality
scores on a separate line (after the + sign). Quality value ranges from0x21 (!, lowest) to 0x7e (~, highest).
2See the fdrtool and locfdr packages for further strategies about controlling global or local FDR, and empirical null modeling
allowing to estimate the variance of the null model (expected to be 1, per the 𝒩(0, 1) hypothesis).
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Like Fasta files, they can be compressed using gzip. Extension is usually .fastq or .fq. Beware of
differing rules (offset coding and PHRED scores) between Sanger and Illumina Fastq format. Here is an
example of the first of the four lines available in each entry of a Fastq file:

1 @K00188:208:HFLNGBBXX:3:1101:1428:1508 2:N:0:CTTGTA

The interesting part in the above example are 2:N:0:CTTGTA, which stands for the member of a pair
(1 or 2, for paired-end or mate-pair reads only), the filter status (Y if filtered, N otherwise), the control
bits (0 when none, otherwise if they are on), and the index sequence or barcode (CTTGTA).

Together with SRA format (see below), this is the default format for DNA reads. Quality control on the
reads can be performed using, e.g., sickle, which basically allows to filter reads with low quality, e.g.,
PHRED score < 35:3

1 $ sickle se -f SRR391535.fastq -t sanger -o trimmed_SRR391535.fastq -q
35 -l 45

This is often one of the very first pre-processing step when working with a batch of DNA reads.

The SRA format is used for Sequence Read Archives, from NCBI. They can be converted to Fastq using
fastq-dump:

1 $ fastq-dump --gzip file.sra

As an alternative, samtools can be used to generate a BAM file:

1 $ sam-dump SRR6960207.sra \
2 | samtools view -bS - > alignments/SRR6960207.bam

SAM (BAM) files are composed of a header (@ lines) and alignments of the sequence against a reference
genome. BAM files are compressed version of SAM files, and you will need the samtools to display
them on screen.

3The PHRED score is defined as 𝑄 = −10 log10(𝑝) where where 𝑝 is the probability that the corresponding base call is
incorrect. A score of 10 means a probability of 1/10 (hence, 90% accuracy for base calling), while a score of 30 means a
probability of 1/1000.
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Figure 2

VCF stands for Variant Call(ing) Format (See 1000 Genomes Project). The format is standardized, like
for SAM files:

1 #CHROM, POS, ID, REF, ALT, QUAL, FILTER, INFO.

A typical workflow consists in calling mpileup via samtools or bcftools (which now integrate the
pileup option). The mpileup command automatically scans every position supported by an aligned
read, computes all thepossible genotypes supportedby these reads, and thencomputes theprobability
that each of these genotypes is truly present in our sample.

1 $ bcftools mpileup -f NC_008253.fna reads_aligned.sorted.bam -o
sim_variants.bcf

The vcflib tools allow to further manipulate VCF files (comparison, format conversion, filtering and
subsetting, annotation, samples, ordering, variant representation, genotype manipulation, interpreta-
tion and classification of variants)

Finally, GFF (or GFF3) files, which stand for General Feature Format or Gene Finding Format, are used
to provide a list of the features (CDS, gene, etc.) available on a given sequence. They have 9mandatory
TAB separated columns. GFF3 have extension .gff3. A typical file is shown below:

1 ##gff-version 3
2 ctg123 . mRNA 1300 9000 . + . ID=mrna0001;Name=sonichedgehog
3 ctg123 . exon 1300 1500 . + . ID=exon00001;Parent=mrna0001
4 ctg123 . exon 1050 1500 . + . ID=exon00002;Parent=mrna0001
5 ctg123 . exon 3000 3902 . + . ID=exon00003;Parent=mrna0001
6 ctg123 . exon 5000 5500 . + . ID=exon00004;Parent=mrna0001
7 ctg123 . exon 7000 9000 . + . ID=exon00005;Parent=mrna0001

Be careful with how entites are identified. In the above case, the id is called ID, but Galaxy expects
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gene_id, for example.

Tools

There are many, many tools available on the internet. They are mostly open-source and macOS-
compatible. To name a few:

• sickle, for QC of reads
• cufflinks, part of the Tuxedo toolsuite (Bowtie + TopHat + cufflinks)
• Picard, to manipulate HTS files
• Bowtie2, or TopHat2 which relies on Bowtie, now HISAT2 (3), for alignments
• kallisto (faster), for fast alignment
• SAMtools (4+5)
• BCFtools (not to be confounded with bedtools)
• vcflib, to manipulate VCF files
• bedtools multicov, featureCounts (subread), HTSeq

Most tools are also available in Galaxy (e.g., Galaxy Europe, or as “shed tools” on a dedicated Galaxy
server). Another software that is widely used for RNA-Seq analysis is MeV, but this a web application
only, see Howe et al. (2011).

Tutorials

• Blog posts: RNA seq analysis - FeatureCounts and DESeq2 workflow; Count-Based Differential
Expression Analysis of RNA-seq Data

• RNA-seq workflow: gene-level exploratory analysis and differential expression
• A simple guide to variant calling with BWA, samtools, VarScan2
• Orchestrating Single-Cell Analysis with Bioconductor
• Reference-based RNA-seq data analysis (Galaxy)
• Prokaryote TNA-Seq and Functional annotation
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