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The problem of assessing influence and detecting influential cases in multiple linear regression 
with incomplete data is considered. A case is said to be influential if appreciable changes in 
fitted regression coefficients occur when it is removed from the data. A one-step influence 
measure is derived, based on the EM algorithm for detecting cases that are influential in the 
maximum likelihood estimation of the regression coefficients. Results are compared with the 
(complete data) Cook’s distance measure. Techniques are demonstrated by examples. 
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1. INTRODUCTION be the multinormal distribution, z N N(p, 2;), where 

A case may be judged influential if appreciable 
changes in important features of the fitted model 
occur when the case is deleted. Finding such cases 
has become a standard part of statistical modeling. 
One may view the search for influential cases as part 
of the concern of the analyst over robustness of a 
fitted model. If conclusions can change when a case is 
deleted, then the usefulness of the fitted model may 
be in doubt. 

Given the maximum likelihood estimates (MLE’s) of 
p and X, usual methods for obtaining estimates for 
the conditional distribution of y ( x can then be used. 

Consider the model 

y = po + x=0 + e, 

where y is a response variable, xr = (x,, . . , , xP) is a 
vector of predictor variables, fi = (pi, . . . , p,)’ is the 
vector of regression coefficients, and e is an error 
with mean 0 and variance a2. For fitting with com- 
plete data, the influence of the ith case can be as- 
sessed by a distance measure (Cook 1977, 1979; 
Cook and Weisberg 1980, 1982), 

In this article we obtain influence measures for 
incomplete data problems in which partially ob- 
served predictors can be assumed jointly normally 
distributed. Fully observed though nonnormal pre- 
dictors may also be included, although these are not 
specifically discussed here; Little (1979) gave the de- 
tails. In Section 2 we outline the EM algorithm 
(Dempster, Laird, and Rubin 1977) for finding 
MLE’s. In Section 3 we discuss the problem of delet- 
ing cases, and we elaborate on the results in Section 
4. In Section 5 we present two influence norms, and 
we give some numerical results in Section 6. Section 
7 contains conclusions. 

2. MAXIMUM LIKELIHOOD ESTIMATION 
D,(A) = CS - b(iJTA- ‘CS - B(iJ, (1.1) 

where b denotes an estimate of lI [or of (PO, fir)‘] 
based on the full data set, j$, is the analogous esti- 
mate without the ith case, and A is a positive definite 
matrix representing the metric chosen. When data 
are incomplete, in the sense that some values of the 
n x (p + 1) data matrix Z = (Y, X) = (zij) are “miss- 
ing at random” (Rubin 1976), one approach to fitting 
the regression that uses all of the observed data is to 
maximize the likelihood of an approximating joint 
distribution for z = (y, xT). A common choice would 

Iterative procedures for computing the MLE of 
8 = (p, Z), using the EM algorithm can be summa- 
rized as follows (Beale and Little 1975). Let 8, be a 
starting value or an intermediate value of 8, Ri be the 
vector of observed variables in the ith case, and cjk 
be the (j, k)th element of Z. Each iterative cycle of 
the EM algorithm consists of two steps: expectation 
(E step) and maximization (M step). The E step fills 
in the data matrix and estimates conditional covari- 
antes of the unobserved given the observed. The fill- 
in values are merely conditional expectations: for 
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each i = 1, . . . , n and j = 1, . . . , p + 1, 
2 ‘ij,s = E(Zij I Ri 2 es), zij not observed 

= zij, Zij observed. (2.1) 

Similarly, the conditional covariance matrix, & for 
case i, given Ri and 8, has (j, k)th element 
A 

Cjk,SIR, = cov(zij, zik 1 Ri , e,), Zij, Zik not observed 

= 0, at least one of zij, zik observed. (2.2) 

These values are easily computed from f& and Ri by 
use of a “sweep” or Gaussian elimination routine. 

The M step obtains the estimates of p and X by 

Cj,M = t ,i zlij.S 9 j=l 3 . . . . p+ 1, (2.3) 
l-1 

and,foreachj,k=1,2 ,..., pfl, 

^ 
Ojk,M = i i$l{(iij,S - fij,M)tiik.S - fik.M) + 2jk.SIRi). 

(2.4) 

For the iterative procedure, substitute 4, = (flu, eM) 
for es, where 

FM = (bj,M), j=l 9 *.., p+ 1, 

and 

cM = (Bjk,M), j, k = 1, . . . , p + 1, 

and cycle through (2.1H2.4) until a convergence cri- 
terion is met. At convergence, we denote the fitted 
matrix by 2 = (9, 2) = (fij), the conditional covari- 
ante matrix for the ith case by Ci, and the MLE’s of 
p and 23 by fi and 2, respectively. The MLE’s of the 
regression parameters p and o2 can be obtained by 
the usual transformations: 

fi = 2;$Exy 

Al = P, - B’P, 
rT2 = a; - 2yx2;;2xy. (2.5) 

As has been pointed out by many authors (Hocking 
and Smith 1972; Press and Scott 1974; Rubin 1974; 
Shih 1981, chap. 5), cases with the response variable 
y missing convey no information on the estimation of 
regression parameters. We therefore exclude such 
cases from consideration in the following discussion. 
From (2.4) and (2.5) one can show that the conver- 
gent form of the MLE of fl can then be written as 

fl = (STS + ly$PY, (2.6) 

where C = C;=i Ci. 

3. DELETING ONE CASE AT A TIME 

To measure influence, we need to compute the 
MLE, or an approximation to it, with one case de- 
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leted. We shall develop an approximation to S,i, that 
does not include the intercept. If inclusion of the in- 
tercept is of interest, then in Equation (2.6) it is neces- 
sary to add only an initial column of 1s to 2 and 
adjust accordingly. 

To obtain ficil, one can delete the ith case and 
follow the EM algorithm (described in Section 2) on 
the remaining n - 1 cases. That is, choose initial esti- 
mates (such as ji, 2 from all n cases) for the mean and 
covariance matrix and go through the EM iterations 
until convergence is reached. We denote Blip, ob- 
tained by this “regular” method, by 

S(i) = tas) &i) + e(i))- la& y(i) > (3.1) 

where the notation indicates that case i has been 
deleted. The concept for this “regular” method is 
simple, as it is the same as that for obtaining 1. The 
iterations involved can be quite expensive, however, 
since fici, is calculated for every case. 

To avoid iteration, we can use a single EM step to 
approximate &iJ. Let Ui be the vector of observed x 
variables in the ith case and Ri = (y,, U,), since the y 
is always observed (see the discussion in Section 2). 
At convergence of the EM algorithm with all of the 
data, from (2.1) and (2.2) we obtain 

~ij = E(Xij 1 yi) Ui) 8), 

Ci = [COV(Xij 9 xik 1 J’i ) Ui, e)]. 

Using 4 (hence b) as the initial estimate, when the ith 
row is deleted from 2 the first E step in obtaining fits 
will not change any of the fill-in values xIij or the 
correction terms Ci. Hence 

is a one-step approximation of %:)iz,, and C,$ = C 
- Ci is a one-step approximation of Cci), where the 
superscript 1 denotes one step. The following M step 
will be carried out as usual. Thus the one-step ap- . 1 
proximation to &, is 

-1 
g(i) = (%~i)TX~i) + ~:i,)- lX~)TY~i). (3.2) 

A simple updating relationship between @, and b is 

fit) = S - [abTrZ~, + ~‘:i,] ~‘[ni~i - his], (3.3) 

where ii = yi - n,rb is the ith estimated residual [see 
the Appendix for a derivation of (3.3)]. If the ith case 
is complete, then li = xi, Ci = 0, ti = yi - xl?@, and 
(3.3) becomes 

S(:) = S - [a:i,‘a:, + ~]- ‘Xi pi. (3.4) 

When the data are complete, Equation (3.4) reduces 
to the least squares result given in Cook (1977, eq. 5). 

The trade-off for saving the extra iterations is in 
the precision of the approximation. Figure 1 is a 
graph of log-likelihoods L(p) and L&I); of course 
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Figure 1, One-Step Approximation to p,,,, Using B as the 
Initial Estimate. L (/3) -e log -likelihood function of p based 
on all of the cases ; L,i,(/I) -, log-likelihood function of B 
based on all of the cases but case i. 

these are multidimensional, so the figure is merely a 
device to suggest the behavior of these functions. In 
Figure 1 the one-step estimate is always moving 
toward the fully iterated estimate, bu, ; that is, it is 
always moving in the right direction, since the in- 
crease of the likelihood in each iteration is guaran- 
teed (Dempster et al. 1977, theorem 1). The one-step 
approximation may underestimate fici, and might be 
improved by further iterative steps. For diagnostics 
where the purpose is to point out big individual ef- 
fects, however, the one-step approximation might be 
an adequate tool for influence even if the one-step 
estimator is poor, as we shall see in Section 6. It 
should be mentioned that this type of one-step pro- 
cedure occurs in other problems, such as nonlinear 
and generalized linear models, as given in several 
examples in Cook and Weisberg (1982, chap. 5). 

4. FURTHER DISCUSSION AND 
COMPUTATIONAL CONSIDERATIONS 

Equation (3.3) can be rewritten as 

&, = [Z + (Q, “a& + q,, ‘i?J@ 

- [fq,, ‘qi, + q,] ’ ci ti ) 

where I is the p x p identity matrix. The complete 
and incomplete data results can be written in one 
form as 

SC; = A,fi* - di, (4.1) 

where p*. Ai, and di are as follows. When data are 
complete, p* is the least squares estimate s of p. Then 

a&’ = j&, , A, = I, di = (X& XJ ‘xi ri. 

When the data are incomplete, the MLE b of fi is 
used. For incomplete cases, 

S$: = S(t) 

-1 T-1 -1 
Ai = 1 + (X(i) X(i) + C,i,) ‘Ci 

di = (iz$, ‘a& + t$,) - ‘rzi r^, , 

whereas for complete cases, 

Ai = I 

di = (&‘i,‘%;i, + t)- ‘di Fi 

Equation (4.1) states that the change of p* to &$ 
in general consists of rotation, stretch or shrinkage of 
some components of b* by Ai, and translation by di. 
When data are complete or at a fully observed case 
in an incomplete data set, the only action is trans- 
lation. The translation is proportional to the least 
squares residual or estimated residual. When not 
null, the rotation, stretch, and shrinkage seem to 
relate to the proportion of the correction ci made by 
removing the ith case. The definition of Ci explains 
that this proportion depends on the covariances of 
the x’s that are missing in the ith case. 

A useful computation form for (3.3) is the follow- 
ing: 

x [rz?i + q,] Ti jl (4.2) 

Since cases with the same missing variables will have 
the same correction matrix Ci and the same matrix 
jLTji. + C:,S.,, matrix inversion can be done once for 
each pattern of incomplete data. Expression (4.2) cor- 
responds to the complete data result in Cook (1977, 
between eqs. 6 and 7) with an extra correction term. 

5. INFLUENCE NORMS 

One goal of influence analysis is to identify those 
cases that give the largest change in a specific aspect 
of an analysis when a case is removed. The identified 
cases can then be studied individually. To rank cases 
on influence, we must define a norm of the vector Bti, 
or its one-step approximation Ski,. Cook and Weis- 
berg (1982, sets. 3.5 and 5.2) considered several meth- 
ods for defining a norm. Because of the complexity of 
the incomplete data problem, there is no obvious 
way to do this. We consider two possibilities. They 
are both elliptical norms, defined for &, by 

Dit-4) = (P - BciJTAm ‘CS - S,iJ 
and for one-step estimators by 

0; (A) = (fi - &$‘A ‘(fi - &,). 

The character of the norm is determined by the 
choice of A. 

In general, choices of A can refer to either an ex- 
ternal reference scale or an internal scatter of the 
changes of b to j$, or @, for one-step estimators. For 
external norms, A can be chosen to be proportional 
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a I0 28 38 40 se 

xl x2 

Figure 2. x = D,(A,) and o = 0: (A,,,) for the first simulat- 
ed example. The underlining pattern gives the variables missing 
for the indicated case. Cases 31-40 are missing x, and 4 7 -50 
are missing x2. 

to an estimate of the variance of b. For internal 
norms, the n values j? - &, (or b - Ski,) are treated as 
an unstructured sample for which the Wilks (1963) 
multivariate outlier technique may be used to order 
the values. For the complete data problem, Cook’s 
(external) measure is preferable because it is compu- 
tationally simple and is made up of a few fundamen- 
tal quantities, whereas computation of the internal 
norm is more complex. For the incomplete data 
problem, both measures are of about equal com- 
plexity, so the choice of one over the other is less 
clear. 

Beale and Little (1975) and Little (1979) proposed 
the use of 

A, = b2Sw1 = $2(gT@‘g) - 1 (5.1) 
as an estimate of var@) in the incomplete data prob- 
lem, where %% is a diagonal matrix with entries equal 
to the ratio of the estimated residual variance of 4’ 
given x to the estimated residual variance of y given 
the observed part of x for the ith case, wi = a/a,.“;. 
Here wi is bounded between 0 and 1 and can be 
thought of as a completeness index. The first norm 
for one-step estimators, for i = 1, 2, . . , n, is 

Di’(Aw) = ~ (S - sb,)‘(rz’~~)(s - B:i,), (5.2) 

where p = number of elements in fl. If we define 
P,$, = %&,, with elements B~,j,j = 1, . . ., n, this mea- 
sure can be written as 

a weighted sum of the squared changes in the fitted 
values. Unlike Cook’s distance, D!(A,) does not 
factor into a fixed part (proportional to the diagonals 
of a projection matrix) and a random part. As Cook 
and Weisberg (1982, p. 137) remarked, the factoriza- 
tion may be unique to complete-data, one-case-at-a- 
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time deletion. Hence computation of 0: (A,) is more 
intensive than is the comparable statistic for com- 
plete data. 

Both the one-step and the fully iterated external 
norms use pA,’ to define the inner product. Since S:i, 
is moving from b toward BtiJ, we can expect that 
usually D,!(A,) I D,(A,), and D!(A,) may be much 
smaller. Using this norm the one-step measure pro- 
vides a lower bound for the fully iterated measure. 

The second norm is defined by the internal scatter 
of Ai = b - Bci, or the A! = fi - @, . A norm can be 
defined using Wilks’s (1963) statistic for a multi- 
variate outlier, 

where 

(hi - ii)TA; ‘(Ai - A), (5.4) 

ii = (l/n)CAi 

A, = C(Ai - @(Ai - ii)T. 

For the complete data problem, A;’ is closely relat- 
ed to the weighted jackknife estimate (Hinkley 1977) 
of vat@). For the incomplete data problem, this esti- 
mate may be poor if the one-step estimates are poor. 

Substituting for Ai in (5.4) and simplifying will give 
the measures. Generally, the correction for centering 
at ;i rather than 0 is negligible and may be dropped 
for simplicity. Then 

Di(At) = CS - S,iJT 

’ 
i 

jl(B - S(iJCS - b(i))‘]- ‘(S - S(i)) C5.j) 

and 

0; (A;) = (@ - fit,)’ 

As defined, Di(A,) and D!(Aj) are bounded between 0 
and 1, with large values corresponding to unusual 
rows. 

8.780 

8.626 

8.358 

0.175 

e.!me 

Figure 3. x : D,(A,) and o = 0: (A:) for the first simulated 
example. 



INFLUENCE WITH INCOMPLETE DATA 235 

cl.126 

8.888 
0 18 28 30 48 68 

x1 *2 xI’x3 ‘2”3 

Figure 4. x = D,(A,) and o = Di(A,) for thesecondsimu- 
lated examDIe. 

Unlike the externally scaled measures, (5.5) and 
(5.6) each use a different inner product; hence D,f (A:) 
need not be smaller than Di(A,). Depending on cir- 
cumstances, this could prove either an advantage or 
a disadvantage. 

Other choices of A to define the norm include ap- 
propriate submatrices of the expected information 
(Hartley and Hocking 1971) or of the observed infor- 
mation (Louis 1982). These may lead to different or- 
dering of cases on influence, but the approach is simi- 
lar to that given here. 

6. NUMERICAL EXAMPLES 

First, we present simulated examples to explore 
the agreement between one-step and fully iterated 
estimates and between internal and external norms. 
This example is part of a larger simulation study by 
Shih (1981). A variety of regression situations were 
studied, all with p = 3 and n = 50, using a design 
also used by Little (1979). Here we report typical 
results for two extreme cases, one in which the one- 
step estimators match the fully iterated estimates 
very closely and one in which they do not match as 
well. 

In the first set, data were generated from the model 

y = x1 + .5x, + .4x, + e, 

where 

e - N(0, .5), with x and e independent. After gener- 
ation of the data, xi was deleted from cases 3140 
and .x2 was deleted from cases 41-50. 

For this setup, agreement between fully iterated 
and one-step distance measures is excellent. Figures 2 
and 3 summarize the results for external scaling and 

internal scaling, respectively. In each figure, the 
crosses indicate the fully iterated estimates and the 
circles indicate the one-step estimates. The longer the 
line segment joining the cross to the circle, the worse 
the agreement. Case 30, the candidate for the most 
influential case, is clearly indicated by either measure. 
We would be led to consider this case carefully. 

The second example is more severely incomplete 
and correlations are lower. The model is the same as 
for the first example, except c2 = 2; 

1 .oo .14 

L = .I4 1 .oo 

\ -.15 .25 1 .oo/ 

and cases l-10 are complete, 11-20 are missing xi, 
21-30 are missing x2, 31-40 are missing x1 and xj , 
and 41-50 are missing x2 and x3. The results are 
summarized in Figures 4 and 5. Agreement of one- 
step and fully iterated measures is not nearly as close 
in these figures, especially for cases with relatively 
large influence. For detecting such cases, however, 
the one-step measures are satisfactory. For example, 
in Figure 4, case 2 has the largest Di(Aw), and al- 
though Di(A,) is much less than D,(A,), it is the 
largest one-step influence measure. Both figures 
would suggest more or less the same cases for further 
analysis, namely cases 2, 7, 14, and 26. 

In both examples, the complete cases, l-30 in Fig- 
ures 2 and 3 and l-10 in Figures 4 and 5, generally 
show larger values for the influence statistics than the 
incomplete cases. Because of the methods of gener- 
ating these data, no overly influential cases are ex- 
pected and none seem to be apparent here. Yet these 
examples suggest that complete cases will tend to be 
more influential in fitting models, and one-step mea- 
sures will generally detect the most influential ones. 

For a final example, we consider the following 
problem. Endogenous creatinine (CR) clearance is an 
important measure of renal function. Although 

0.788 I I 
I x I 

0.176 

8.888 

Figure 5. x = D,(A,) and o = Df (A:) for the second simu- 
lated example. 
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Table 1. Data for the Creatinine Clearance Example 

SC Age CR 

1 71.0 .71253 38 132.0 
2 69.0 1.48161 78 53.0 
3 85.0 2.20545 69 50.0 
4 100.0 1.42505 70 82.0 
5 59.0 .67860 45 110.0 
6 73.0 .75777 65 100.0 
7 63.0 1.11969 76 68.0 
8 81.0 .91611 61 92.0 
9 74.0 1.54947 68 60.0 

10 87.0 .93873 64 94.0 
11 79.0 .99528 66 105.0 
12 93.0 1.07445 49 98.0 
13 60.0 .70122 43 112.0 
14 70.0 .71253 42 125.0 
15 83.0 .99528 66 108.0 
16 70.0 2.52212 78 30.0 
17 73.0 1.13100 35 111.0 
18 85.0 1.11969 34 130.0 
19 68.0 1.37982 35 94.0 
20 65.0 1.11969 16 130.0 
21 53.0 .97266 54 59.0 
22 50.0 1.60602 73 38.0 
23 74.0 1.58339 66 65.0 
24 67.0 1.40244 31 85.0 
25 80.0 .67860 32 140.0 
26 67.0 1 .19886 21 80.0 
27 68.0 7.60001 81 4.3 
28 72.2 2.10001 43 43.2 
29 NA 1.35719 78 75.0 
30 NA 1.05183 38 41.0 
31 107.0 NA 62 120.0 
32 75.0 NA 70 52.0 
33 62.0 NA 63 73.0 
34 52.0 NA 68 57.0 

NOTE NA- not available 

measurement of this quantity is inexpensive in 
humans, it is difficult to use in a clinical setting be- 
cause it requires 24-hour urine collections. Conse- 
quently, it is usual to model CR as a function of 
easily collected information, typically serum creatin- 
ine (SC) concentration, in mg/deciliter, body weight 
(WT) in kg, age in years, and sex. For estimating CR, 
many pharmacokinetics textbooks recommend using 
a model of the form 

Wx(CW = Bo + 81 WWT) 

+ p2 log(X) + /I3 log(140 - age), 

where Do will be different for males and for females. 

Table 2. Di (A ,+,) for All i With Relatively Large Values 

Case n = 34 n = 33 

20 .20 .32 
22 .I5 .06 
27 4.76 - 
28 ,004 .41 
30 .29 .49 

0 

W 27 

3.8 4.0 4.2 4.4 4.6 4.8 

logCWelaht> 

Figure 6. Scatterplot for Creatinine Clearance Example. 

The data in Table 1 are from a clinical trial con- 
ducted overseas by Merck Sharp and Dohme Re- 
search Laboratories. Of 34 male patients, 2 had no 
record of WT, and 4 were missing SC. No apparent 
reason for these data to be missing was available. 
Because the fraction of data with incomplete infor- 
mation, .18, is so large, incorporation of the incom- 
plete data into the analysis seems desirable. If we can 
make the assumption of joint multivariate normality 
of the response and the three predictors, then the 
incomplete data methodology of this article can be 
applied. 

For these data, almost identical inferences are ob- 
tained if one-step or fully iterated measures are com- 

0 

UY 

0 

P 

0 

c; 

0 

& 

-0.5 0.5 1.0 1.5 2.0 2.5 

I OQ<SC) 
Figure 7. Scatterplot for Creatinine Clearance Example 
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0 

4 

- r27 
0 I I I I . . 

4.0 4.2 4.4 4.6 4.8 5.0 

lo~<l40-Age) 

Figure 8. Scatterplot for Creatinine Clearance Example. 

puted, for either choice of norm, so for clarity, in 
Table 2 we present only Di(A,); for all cases not 
given in the table, D,(A,) < .ll. One case, 27 in 
Table 1, is clearly far removed from the others in the 
data and is strongly influential. The second most in- 
fluential case, 30, is one of the partially observed 
cases that is missing WT. 

Figures 6, 7, and 8 are scatterplots of the response 
versus each of the predictors, with cases 27 and 30 
marked on the plot. The importance of case 27 is 
easily predictable from the plot. The importance of 
case 30, however, may have been overlooked without 
this analysis; Figure 6 does not contain case 30. 

Later discussion with the supervising physician re- 
vealed that case 27 had high-grade renal impairment 
and could therefore be expected to be quite different 
from the other patients. Deletion of case 27 seems to 
be appropriate for this analysis. When the inappro- 
priate case 27 is deleted from the data, the resulting 
fitted mode1 is shown in Table 3. The largest change 
seems to be in estimated residual variance and in the 
coefficient for log(SC). Influence values for selected 

cases are given in Table 2 and show that the incom- 
plete case 30 is now the most influential, but it is 
only of modest influence. This case was low for each 
of its observed predictors. Of course we do not know 
the third predictor, and this may well have “ex- 
plained” the unusual response for case 30. The care- 
ful investigator, however, would be alerted to the 
possible special interest in this case. 

7. DISCUSSION 

Detection of influential cases in regression analysis 
has been proven important in principle and useful in 
practice in the past for complete data problems. In 
the situation of incomplete data, there is no reason 
for the usefulness to diminish. Detecting influential 
cases becomes more interesting because of additional 
new questions. For example, one might ask whether 
an incomplete case can be influential. Since the miss- 
ing values are replaced by conditional expectations 
and tend to move cases to the center of the data, the 
lack of influence of incomplete cases can be expected 
in general. From the real data example, however, we 
also have seen that incomplete cases can be relatively 
influential. 

Automatic deletion of incomplete cases has been 
argued to be not desirable when the portion of in- 
complete cases is relatively large or in situations such 
as clinical trials in which deletion of any cases may 
involve regulatory discussion. The example suggests 
that automatic deletion of incomplete cases may even 
lose important information in the sense of modeling, 
since they may be influential. 

We have presented two choices for influence 
norms-external and internal. Although the two 
norms provided similar ordering of cases with respect 
to influence in our examples, one should not expect 
this similarity to hold in general. We have found it 
helpful to look at both norms and view the infor- 
mation from them as complementary. If only one 
norm is to be chosen, we tentatively recommend the 
external norm because of the agreement between 
fully iterated and one-step procedures using it. The 

Table 3. Estimates and Standard Errors 

Complete Data Only All Data 

All cases Case 2 7 deleted All cases Case 2 7 deleted 

Estimate SE Estimate SE Estimate SE Estimate SE 

Intercept -2.97 1.51 -2.68 .99 -3.33 1.20 -3.24 1.08 
bilw-n .99 .26 .90 .17 1.17 .21 -1.07 .15 
lw(W -1.08 .09 -.78 .08 -1.08 .31 -.77 .lO 
log(l40-age) .73 .21 .75 .14 .65 .21 -.71 .18 
9 ,044 .019 ,045 ,019 

NOTE: SE IS standard error. 
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choice of influence norms in this and other diagnostic 
problems, however, is not a completely settled issue. 

The techniques discussed here extend influence 
analysis to incomplete data problems. The extension 
is one more step toward making regression analysis 
with incomplete data useful for the data analyst. Be- 
cause of the additional complexity of these problems, 
there are many problems for further research, such as 
calibration with respect to some external standard. 
Other problems are inherited from the maximum 
likelihood estimation, including filling in missing 
values and the normality assumption. For filling in 
missing values, a possible problem is the likely sensi- 
tivity (nonrobustness) of the filled-in values, since 
these are conditional expectations. This may not be 
much of a problem, however, because the filling in is 
just a convenient computational procedure; in fact, 
we integrate out the unobserved values, suggesting 
that this nonrobustness is more apparent than real. 

The normality assumption for the missing X’s is 
used explicitly in several places. If the X’s were non- 
normal, one might ask if the approach taken here 
will give reasonable results. The answer depends on 
how well the true log-likelihood is approximated by 
the normal log-likelihood. If the true log-likelihood 
for II is approximately quadratic, one might expect 
this method to work acceptably; if it is not quadratic, 
it is likely to do poorly. In either case, we have seen 
that the one-step norms tend to point out influential 
cases. 
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APPENDIX: DERIVATION OF EQUATION (3.3) 

To derive (3.3) we first write 

fj = (2’2 + ppy 

= (a($,’ rz;, + q, + gi 2; + Q) ‘(%(y YCi, + 5ii y,). 

(A.11 
Let pi = MiMT be a square root decomposition of 
the symmetric matrix ci. We write 

RiPT + Ci = (5~9 Mi)(ki, Mi)= 

and then apply the following matrix identity to the 
first factor on the right side of (A.1): 

(E + G*H)-’ 

= E-l - E-lGT(I + GE-‘HT)-lHE-l. 

[A proof and history of a generalization of this iden- 
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tity was given by Henderson and Searle (1981).] 
Then 

(a(y R$, + qi, + Bi af- + Q- l = (ag a($ + q,,- l 

- (%:i,’ R:i, + CT;,)- ‘(rZi, Mi)(I + U)- ‘(9i 3 MI,)= 

x (?i$; ii& + t?,$,) - ‘, (A.2) 

where 

U = (ni) Mi)‘(a~i;a~, + ~~,)-‘(ai, Mi). 

Substituting (A.2) into (A.l) and writing 

j&y, = (ai, Mi) 
0 

‘oi 

in (A.l), we have 

S = st, - (rZ:i,‘rZ~i, + ~~I)- ‘(pi, Mi) 

x [(I + w$fJ fyi,-[I-(I+U)-‘U] ; ( I . 
(A.3) 

Denote ry = yi - 2i,rfi,$, . The following facts will be 
shown immediately after the result: 

I -(I + u)-‘u = (I + u)-1, (A.4) 

and 

Applying (A.4) and (A.5) (A.3) can be simplified to 

S = Soil + (rZ:i: a~i, + ~::i,)- ‘(fi pi - pi S). 

Result (A.4) follows by multiplying both sides of 
(A.4) by (I + U) and simplifying. Result (A.5) requires 
two intermediate results, which follow from (A.2) and 
(A.4): 

(rZi, Mi)T(iiT?i + c)-’ 

= (I + U)-‘(~i, Mi)(iz~;rZ,i, + Cb,)-’ (A.6) 

and 

I - (ni, Mi)‘(rZTrZ + ~)-‘(rZi, Mi) = (I + U)-‘. 

(A.7) 
Then (AS) is proved as follows: 

Write %rY = 2;; Yfi, + Pi yi, fi yi = (ni, h&)(g). Then 

y+.)=(;) * - - - (xi, Mi)=(%=X + C)- l%/i;Yfij 
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- (pi, Mi)T(~T~ + ~)-‘(~i, Mi) 

= -(ai, Mi)T(%T% + e)-‘fi;i;Yci, 

+ [I - (ki, Mi)T(%T% + t)- ‘(ri,, M,)] ; 
0 

zz -(I + U)-‘(2. M.)T(gl.‘xl. II I (0 (1) 

+ C$))- lXt,TY(i)[I + U] - 

[from (A.6) and (A.7)] 

1 

[Received March 1984. Revised Jnnuary 1986.1 
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