
Christophe Lalanne

A Visual Guide to

R Graphics and
Data Munging

With 65 illustrations



7d26af9

2015/04/10

Christophe Lalanne

xyplot
data

list c

sc
al

es dist

col
panel

type

pch

m
ea

n

function

as
pe

ct box.ratio
cut

data.frame
panel.xyplot

rnorm

zoo

qqmath

stripplot

alpha
histogram

log
ts

alternating

border

densityplot

dotplot

factor

groups

jitter.data
lwd

ov
er

la
p

rot

sample

sd

tck

xlab

xy

ylab

abline

aggregate

amount

barchart

breaks

br
ew

er
.p

al

by
cex

color

colorkey

cov

cumsum

ecdfplot

group.number
horizonplot

include.lowest
jitter.x

nu
m

be
r

panel.bwplot panel.xyarea
plot.points

qnorm

quantile

replace

replicate

seq
span

st
rip

su
bs

et

su
pe

rp
os

e

w
ith

The greatest value of a picture is when it forces us to notice what we never expected to see. — John Tukey

At their best, graphics are instruments for reasoning. — Edward Tufte

Contents

1 Getting started with R graphics 3

1.1 Why R? . 3

1.2 The R graphical model . 4

1.3 Base vs. lattice graphics . 4

1.4 The grammar of graphics . 4

2 Data management 5

2.1 Structuring data . 5

2.2 Managing data . 5

2.2.1 Variable recoding and annotation 6

2.2.2 Variable transformation . 8

2.3 Indexing, subsetting, conditioning . 9

2.4 Summarizing data . 9

2.4.1 Base R functions . 10

2.4.2 The Hmisc package . 10

2.4.3 The plyr package . 14

3 Univariate distributions 15

3.1 Stripchart . 15

3.2 Histograms . 17

3.3 Density plots . 19

3.4 Quantile and related probability plots 21

3.5 Boxplots . 24

3.6 Time series . 25

iii

4 Two-way graphics 31

4.1 Lineplots . 32

4.2 Scatterplots . 32

4.3 Barcharts . 37

4.4 Dotcharts . 37

4.5 Line fits . 39

4.6 Time series . 40

4.7 Level plot . 42

5 Multi-way graphics 45

5.1 Parallel displays . 45

5.2 Scatterplot matrix . 45

5.3 Three-way tabular data . 45

5.4 N-way data . 45

6 Customizing theme and panels 47

7 The Hmisc plotting functions 49

7.1 Two-way graphics . 49

8 The ggplot2 package 51

8.1 Why ggplot2 . 51

8.2 Core components of a ggplot graphic 51

9 Interactive and dynamic displays 53

9.1 Exploratory data analysis . 53

9.2 Brushing and linking . 53

9.3 The ggobi toolbox . 53

CHAPTER1

Getting started with R graphics

1.1 Why R?

In the “GNUworld”,most of the plotting programexpect data from text file (tab-delimited
or csv) arranged by columns, with extra grouping levels denoted by string or integer codes.
This is the case with gnuplot¹ (http://www.gnuplot.info/) or plotutils (http://www.gnu.
org/software/plotutils/), for example.

Here is howwe could create an histogram in gnuplot, froma series of 500 gaussian variates
generate using R as follows:

$ Rscript -e 'cat(rnorm(500), sep="\\n")' > rnd.dat

Then, in gnuplot, we can run

bw=0.2

n=500

bin(x,width)=width*int(x/width)

tstr(n)=sprintf("Binwidth = %1.1f\n", n)

set xrange [-3:3]

set yrange [0:1]

set boxwidth bw

plot 'rnd.dat' using (bin($1,bw)):(1./(bw*n)) smooth frequency \

with boxes title tstr(bw)

to get the picture shown below. (Note that we didn’t try to customize anything, except the
title.)

¹PK Janert. Gnuplot in Action. Understanding Data with Graphs. Manning Publications, 2009. isbn: 978-
1933988399.

3

The above example shows one important aspect of using a dedicated statistical package:
Gnuplot has no function to draw an histogram, and we have to write some code to per-
form additional tasks, like binning in this case. The same applies for plotutils. We could
make use of external programs to do that, like the GSL library (see example 22.11 from
the manual, http://www.gnu.org/software/gsl/manual/), but this two-stage approach
is rather likely to be cumbersome for repetitive tasks.

The author found that Stata is one of the only great alternative to R, but it has its cost.
In fact, this textbook is largely inspired from one of Stata Press book on Stata graphical
capabilities.²

1.2 The R graphical model

1.3 Base vs. lattice graphics

R comes with several graphical system, including so-called “Base” graphics, which rely
on grDevices and ??. While these plotting functions are quite useful, they lack several
interesting aspects that are available through grid-based packages, including lattice and
ggplot2, and in particular the update and print function.

1.4 The grammar of graphics

²MN Mitchell. A Visual Guide to Stata Graphics. Stata Press, 2008. isbn: 978-1597180399.

Tidying

CHAPTER2

Data management

2.1 Structuring data

In R, the most common structure used to store a data set with mixed-type variables is a
data.frame. Such an R object presents several characteristics that makes it most appro-
priate for managing statistical data structure, with few exceptions (e.g., when one only
has to work with aggregated data or two-way tables). It should be noted that other data
structures might be more appropriate, for example when one is interested in time series
analysis, but see the zoo package.¹
Many R functions accept data.frame as input, and further allow to subset or index it for
computation or visualization purpose. In addition to receiving a data.frame, some R
commands allow to use a formula notation, where the right and left-hand side are sepa-
rated by the ∼ (tilde) operator. The use of together with a data.frame simplify the acces-
sion of variable in a given environment. This is especially true when using the lattice

package which is entirely based on formula, even if this is not apparent at first sight.

2.2 Managing data

Consider, for example, the low birth study which is discussed at length in Hosmer and
Lemeshow’s textbook on logistic regression.² A quick look at the variables shouldmake it
clear that they won’t be treated the way we like them to be considered: mother’s ethnicity
status (race) takes three integer values, without any explicit meaning.

data(birthwt, package="MASS")

str(birthwt)

¹A Zeilis and G Grothendieck. “zoo: S3 Infrastructure for Regular and Irregular Time Series”. In: Journal of
Statistical Software 14.6 (2005). url: http://www.jstatsoft.org/v14/i06.
²D Hosmer and S Lemeshow. Applied Logistic Regression. New York: Wiley, 1989. isbn: 0-471-35632-8.

5

Tidying
2.2.1 Variable recoding and annotation

The Hmisc package includes numerous R functions that will facilitate the task of data
checking (describe provides “codebook” facilities), summarizing (summary.formula) or
aggregating data, (summary.formula).

Here are some examples of use with the birthwt data. For illustration purpose, we set
some observations as missing on two variables (age and ftv).

set.seed(101)

birthwt$age[5] <- NA

birthwt$ftv[sample(1:nrow(birthwt), 5)] <- NA

yesno <- c("No", "Yes")

birthwt <- within(birthwt, {

smoke <- factor(smoke, labels = yesno)

low <- factor(low, labels = yesno)

ht <- factor(ht, labels = yesno)

ui <- factor(ui, labels = yesno)

race <- factor(race, levels = 1:3, labels = c("White", "Black", "Other"))

lwt <- lwt/2.2 ## weight in kg

})

It often helps to keep variable names short and informative, and to have separated labels
and/or units in case of continuous measurements. This is available via the label and
units functions. Note that label allows to annotate the data frame as well.

library(Hmisc)

label(birthwt$age) <- "Mother age"

units(birthwt$age) <- "years"

label(birthwt$bwt) <- "Baby weight"

units(birthwt$bwt) <- "grams"

label(birthwt, self = TRUE) <- "Hosmer & Lemeshow's low birth weight study."

These labels can thenbe used in almost every Hmisc functions, evenwhenusing list.tree
in place of str. However, we will see that there mostly useful when generating Tables or
Figures.

The contents command offers a quick summary of data format and missing values, and
it provides a list of labels associated to variables treated as factor by R.

Once we have a working data frame, the functions contents and describe provide two
quick summary of the data.

> contents(birthwt)

Data frame:birthwt 189 observations and 10 variables Maximum # NAs:5

Labels Units Levels Class Storage NAs

low 2 integer 0

age Mother age years integer integer 1

Tidying
lwt double 0

race 3 integer 0

smoke 2 integer 0

ptl integer 0

ht 2 integer 0

ui 2 integer 0

ftv integer 5

bwt Baby weight grams integer integer 0

+--------+-----------------+

|Variable|Levels |

+--------+-----------------+

| low |No,Yes |

| smoke | |

| ht | |

| ui | |

+--------+-----------------+

| race |White,Black,Other|

+--------+-----------------+

As can be seen, contents displays storage mode and class of R variables that are present
in the data frame. The number of missing values is also reported for each variable. The
levels of each factor-type variable is also printed at the end of the output.

> describe(subset(birthwt, select = c(low, age, race, ftv)), digits = 3)

4 Variables 189 Observations

--

low

n missing unique

189 0 2

No (130, 69%), Yes (59, 31%)

--

age : Mother age [years]

n missing unique Info Mean .05 .10 .25 .50 .75

188 1 24 1 23.3 16 17 19 23 26

.90 .95

31 32

lowest : 14 15 16 17 18, highest: 33 34 35 36 45

--

race

n missing unique

189 0 3

White (96, 51%), Black (26, 14%), Other (67, 35%)

--

ftv

n missing unique Info Mean

Tidying
184 5 6 0.83 0.783

0 1 2 3 4 6

Frequency 98 45 30 7 3 1

% 53 24 16 4 2 1

--

The describe function gives more details, and, in particular, provides useful summary
statistics for each variable. Here, we only considered four variables: a binary variable
(low), a continuous measure (age), a three-level factor (race), and a count variable (ftv).
The output will be different depending on the type of variable, and for all but continuous
measures (defined as variable taking at least 10 distinct values) describe will display a
table of counts and frequencies.

2.2.2 Variable transformation

In case we would like to consider one of the above factors as a numerical variable, we
can now use as.numeric and R will take care of attributing the lowest integer score to the
baseline category. Of course, there might be occasion where we would like to change that
reference level; or, we might want to collapse two discrete categories. Again, there are
simple commands to do that, for example:

birthwt$low <- relevel(birthwt$low, "Yes")

levels(birthwt$race)[2:3] <- "Black+Other"

Another common task consists in transforming some predictors, either for visualization
purpose or when building an explantory or predictive model. As a simple example, we
can imagine centering some of the predictors of interest, like age, in the above example.
The within or transform command can be used to append the centered variable to the
list of variables present in the data.frame:

birthwt <- transform(birthwt, age.c=scale(age, scale=FALSE))

Likewise, we may want to recode previous premature labours (ptl) as yes/no and num-
ber of physician visits during the first trimester (ftv) as one/more than one, like shown
below (we show two different syntax that basically perform the same task by relying on R
indexing):

birthwt <- transform(birthwt, ptl.yn=factor(ptl > 0, labels=c("No","Yes")),

ftv.c=factor(ifelse(ftv < 2, "1", "2+")))

Hmisc provides a replacement for R’s cut function with better default options (especially
the infamous include.lowest = FALSE) to discretize a continuous variable. The cut2

function has many useful options, including g= and levels.mean= to return 𝑔 classes and
report center of each class instead of class intervals:

table(cut2(birthwt$age, g = 3, levels.mean = TRUE, digits = 3))

If there is some reason to treat ftv as an ordered factor, a command like

as.ordered(cut2(birthwt$ftv, c(0, 1, 2, 6)))

might do the job.

Tidying
2.3 Indexing, subsetting, conditioning

A lot of statistical operations that practictioners use to apply on a given dataset are mostly
variations around the idea of indexing or subsetting. By comparison, SQL-like operations
would be selection and projection.

The subset command offers a simple and elegant way to combine both operations: for a
given data frame, the subset = option is used to filter rows according to logical expression
or simple row indexes while the select = option is used to return only selected variables
based on their index (e.g., column 1 and 3) or an unquoted name (e.g., c(low,lwt)).

The following instruction will print the age of hypertensive mothers whose baby was un-
derweight:

subset(birthwt, low == "Yes" & ht == "Yes", age)

It should be noted that subset returns a data frame.

Some people might prefer to use their favorite SQL-like language, so something like this
would perfectly fit their needs:

library(sqldf)

sqldf("SELECT age FROM birthwt WHERE low = 0 AND ht = 1 LIMIT 3", row.names = TRUE)

Unfortunately, this doesn’t work with “labelled” objects, as typically returned by Hmisc,
although a solution is readily available at http://stackoverflow.com/q/2394902/420055.

There are also a bunch of command dedicated to variables clustering, analysis of missing
patterns, or simple (impute) or multiple (aregImpute, transcan) imputation methods.
Here is how we would impute missing values with the median in the case of a continuous
variable:

lwt <- birthwt$lwt

lwt[sample(length(lwt), 10)] <- NA

lwt.i <- impute(lwt)

summary(lwt.i)

Missing observations will be marked with an asterisk when we print the whole object in
R. To use the mean instead of the median, we just have to add the fun = mean option.

2.4 Summarizing data

Statisticians generally spend a great part of their time in data cleansing, data transforma-
tion or re-expression,³ and data visualization.

³DC Hoaglin, F Mosteller, and JW Tukey. Understanding Robust and Exploratory Data Analysis. Wiley-
Interscience, 1983. isbn: 0-471-09777-2.

Tidying
2.4.1 Base R functions

Both the by and tapply function allow to apply a builtin or custom function to help sum-
marizing a numeric variable by a categorical variable. Most of the time, these two func-
tions are less handy than aggregate since the latter offers a formula interface and returns
a data frame.

aggregate(bwt ~ ui + I(ftv > 1), data = birthwt, mean)

There is, however, one caveat when using aggregate: even if you can pass a custom func-
tion that returns multiple values that can be printed on screen, the resulting data frame
will still have only one column for its output. For exemple, the dimensions of the data
frame created by the following call to aggregate is 4 by 3, even if it looks like there two
separate columns for bwt mean and SD.

f <- function(x) c(mean = mean(x), sd = sd(x))

aggregate(bwt ~ ui + I(ftv > 1), data = birthwt, f)

2.4.2 The Hmisc package

There are three useful commands that provide summary statistics for a list of variables.
They implement the “split-apply-combine” strategy⁴ in the spirit of R’s built-in functions
(unlike plyr).

The first one, summarize, can be seen as an equivalent to R’s aggregate command. Given
a response variable and one or more classification factors, it applies a specific function to
all data chunk, where each chunk is defined based on factor levels. The results are stored
in a matrix, which can easily be coerced to a data frame using, e.g., as.data.frame or
Hmisc::matrix2dataFrame.

Note that enhanced results can be printed on the console using the prn command.

Here is a first example, using a dedicated function to print the mean and standard devia-
tion (SD) of a numerical variable:

f <- function(x, na.opts = TRUE) c(mean = mean(x, na.rm = na.opts), sd = sd(x,

na.rm = na.opts))

out <- with(birthwt, summarize(bwt, race, f))

Here is the output produced by R:

Average baby weight by ethnicity out

race bwt sd

3 White 3103 727.9

1 Black 2720 638.7

2 Other 2805 722.2

⁴H Wickham. “The Split-Apply-Combine Strategy for Data Analysis”. In: Journal of Statistical Software 40.1
(2011). url: http://www.jstatsoft.org/v40/i01.

Tidying
Contrary to aggregate, this command provides multiway data structure in case we ask to
compute more than one quantity. In this case, the dimension of out is a 3 by 3 data frame.

Summarizing multivariate responses or predictors is also possible, with either summarize
or mApply. Of course, any built-in functions, such as colMeans could be used in place of
our custom summary command.

with(birthwt, summarize(bwt, llist(race, smoke), f))

The second command, bystats, (or bystats2 for two-way tabular output) allows to de-
scribe with any custom or built-in function one or multiple outcome by two explanatory
variables, or even more. Sample size and the number of missing values are also printed.

With the following instruction,

with(birthwt, bystats(cbind(bwt, lwt), smoke, race))

we would get

Mean of cbind(bwt, lwt) by smoke

N bwt lwt

No White 44 3429 63.11

Yes White 52 2827 57.41

No Black 16 2854 67.93

Yes Black 10 2504 64.82

No Other 55 2816 54.16

Yes Other 12 2757 56.36

ALL 189 2945 59.01

whereas

with(birthwt, bystats2(lwt, smoke, race))

gives

Mean of lwt by smoke

+----+

|N |

|Mean|

+----+

+---+-----+-----+-----+-----+

|No | 44 | 16 | 55 |115 |

| |63.11|67.93|54.16|59.50|

+---+-----+-----+-----+-----+

|Yes| 52 | 10 | 12 | 74 |

| |57.41|64.82|56.36|58.24|

+---+-----+-----+-----+-----+

|ALL| 96 | 26 | 67 |189 |

| |60.02|66.73|54.55|59.01|

+---+-----+-----+-----+-----+

Tidying
The third and last command is summary.formula, which can be abbreviated as summary as
long as formula is used to describe variables relationships. There are three main configu-
rations (method=): ”response”, where a numerical variable is summarized for each level of
one or more variables (numerical variables will be discretized in 4 classes), as summarize
does; ”cross”, to compute conditional and marginal means of several response variables
described by at most 3 explanatory variables (again, continuous predictors are repre-
sented as quartiles); ”reverse”, to summarize univariate distribution of a set of variables for
each level of a classification variable (which appears on the left-hand side of the formula).
Variables are viewed as continuous as long as they have more than 10 distinct values, but
this can be changed by setting, e.g., continuous = 5. When method = "reverse", it is
possible to add overall = TRUE, test = TRUE to add overall statistics and corresponding
statistical tests of null effect between the groups.

Here are some examples of use, with their outputs.

> summary(bwt ~ race + ht + lwt, data = birthwt)

Baby weight N=189

+-------+------------+---+----+

| | |N |bwt |

+-------+------------+---+----+

|race |White | 96|3103|

| |Black | 26|2720|

| |Other | 67|2805|

+-------+------------+---+----+

|ht |No |177|2972|

| |Yes | 12|2537|

+-------+------------+---+----+

|lwt |[36.4, 50.9)| 53|2656|

| |[50.9, 55.5)| 43|3059|

| |[55.5, 64.1)| 46|3075|

| |[64.1,113.6]| 47|3038|

+-------+------------+---+----+

|Overall| |189|2945|

+-------+------------+---+----+

> summary(cbind(lwt, age) ~ race + bwt, data = birthwt, method = "cross")

mean by race, bwt

+-------+

|N |

|Missing|

|lwt |

|age |

+-------+

+-----+-----------+-----------+-----------+-----------+-----+

| race|[709,2424)|[2424,3005)|[3005,3544)|[3544,4990]| ALL |

+-----+-----------+-----------+-----------+-----------+-----+

Tidying
|White| 19 | 23 | 20 | 33 | 95 |

| | 0 | 1 | 0 | 0 |1 |

| | 55.55 | 57.67 | 62.23 | 63.25 |60.14|

| | 22.74 | 24.78 | 24.50 | 24.91 |24.36|

+-----+-----------+-----------+-----------+-----------+-----+

|Black| 9 | 9 | 6 | 2 | 26 |

| | 0 | 0 | 0 | 0 |0 |

| | 65.10 | 59.70 | 70.83 | 93.41 |66.73|

| | 23.44 | 20.89 | 20.00 | 20.50 |21.54|

+-----+-----------+-----------+-----------+-----------+-----+

|Other| 20 | 16 | 19 | 12 | 67 |

| | 0 | 0 | 0 | 0 |0 |

| | 51.23 | 52.95 | 58.90 | 55.34 |54.55|

| | 22.20 | 22.69 | 22.26 | 22.50 |22.39|

+-----+-----------+-----------+-----------+-----------+-----+

|ALL | 48 | 48 | 45 | 47 |188 |

| | 0 | 1 | 0 | 0 |1 |

| | 55.54 | 56.48 | 61.97 | 62.51 |59.06|

| | 22.65 | 23.35 | 22.96 | 24.11 |23.27|

+-----+-----------+-----------+-----------+-----------+-----+

> summary(low ~ race + ht, data = birthwt, fun = table)

low N=189

+-------+-----+---+---+---+

| | |N |No |Yes|

+-------+-----+---+---+---+

|race |White| 96| 73|23 |

| |Black| 26| 15|11 |

| |Other| 67| 42|25 |

+-------+-----+---+---+---+

|ht |No |177|125|52 |

| |Yes | 12| 5| 7 |

+-------+-----+---+---+---+

|Overall| |189|130|59 |

+-------+-----+---+---+---+

Finally, here is amore complexTable produced by summary.formulawith method = "reverse".

out <- summary(low ~ race + age + ui, data = birthwt, method = "reverse", overall = TRUE,

test = TRUE)

print(out, prmsd = TRUE, digits = 2)

Although we display the output on the console directly, it is also possible to build a 𝐿A𝑇E𝑋
Table using the latex function.

latex(out, file = "tab-summary.tex", ctable = TRUE, digits = 1, exclude1 = FALSE, caption = NULL)

Here is the final output

Tidying
N No Yes Combined Test Statistic

𝑁 = 􏷠􏷢􏷟 𝑁 = 􏷤􏷨 𝑁 = 􏷠􏷧􏷨

race : White 189 56% (73) 39% (23) 51% (96) 𝜒􏷡􏷡 = 5, 𝑃 = 0.08􏷠
Black 12% (15) 19% (11) 14% (26)

Other 32% (42) 42% (25) 35% (67)

Mother age years 188 19 23 28 20 22 25 19 23 26 𝐹􏷠,􏷠􏷧􏷥 = 1, 𝑃 = 0.2􏷡
ui : No 189 89% (116) 76% (45) 85% (161) 𝜒􏷡􏷠 = 5, 𝑃 = 0.02􏷠

Yes 11% (14) 24% (14) 15% (28)

𝑎 𝑏 𝑐 represent the lower quartile 𝑎, the median 𝑏, and the upper quartile 𝑐 for continuous variables.
𝑁 is the number of non–missing values.
Numbers after percents are frequencies.
Tests used:
1Pearson test; 2Wilcoxon test

2.4.3 The plyr package

The plyr package⁵ offers a general solution to those kind of tasks.

⁵Ibid.

Lattice

CHAPTER3

Univariate distributions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.1 Stripchart

Stripchart aims at showing the distribution of a series of continuousmeasurements (much
like scatterplot for 2D data discussed in § 4.2). They are useful for small to moderate
dataset. With large𝑁 it is proably better to switch to alternative displays, see next sections.

x <- sample (1:30 , 25 , replace=TRUE)

stripplot(∼ x, jitter.data=TRUE , factor=.8 , aspect=.5)

With this synthetic dataset where several obser-
vations can take the same value, jittering point
locations on the horizontal and vertical axes en-
sures a better representation.

x

5 10 15 20 25 30

15

Lattice

stripplot(∼ x, jitter.data=TRUE , factor=.8 , aspect="xy")

x

5 10 15 20 25 30

A better way of flattening the display is to use an
“xy” aspect.

stripplot(x ∼ 1, horizontal=FALSE , jitter.data=TRUE , aspect =1.2 ,

scales=list(x=list(draw=F)), xlab="" , pch=15, alpha=.5)

x

5

10

15

20

25

30 This is basically the same picture but the 𝑥 and
𝑦 axis have been transposed. We used a differ-
ent symbol and transparency to highlight where
replication occurs in the data. Obviously, that
won’t work so nicely with larger sample size or
a higher density of replication.

stripplot(∼ x, panel=HH:: panel.dotplot.tb , cex=1.2 , factor=.2)

x

5 10 15 20 25 30

In contrast to the base stripchart function,
there is no way of imposing a stacked display
in lattice. However, there is some convenient
panel function in the HH package.

Lattice

x <- sample(seq (1, 60, by=2) , 75 , replace=TRUE)

stripplot (1 ∼ x, panel=panel.sunflowerplot , col="black",

seg.col="black" , seg.lwd =1, size=.08)

With possible replicates, it is also interesting to
use “sunflowers” where multiple leaves are used
for each duplicate. The custom panel function
mimics the base sunflowerplot function. For an
alternative way of embedding “sunflowers” into
a lattice display, see the following thread on
R-help: http://bit.ly/Ig4RTq. Note that we
remove 𝑦-axis annotation using commands pre-
sented before (i.e., using scales=).

x

0 10 20 30 40 50 60

3.2 Histograms

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

histogram(∼ waiting , data=faithful)

faithful. Waiting time between
eruptions and the duration of the
eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming,
USA.

A simple histogram of waiting time expressed as
density. Note that forgetting the ∼ operator will
raise an error message.

waiting

P
e
rc

e
n
t

o
f

T
o
ta

l

0

5

10

15

20

25

40 50 60 70 80 90 100

Box 3.1 shows some custom settings with the faithful dataset. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing
vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, con-

Lattice

sectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant
morbi tristique senectus et netus etmalesuada fames ac turpis egestas. Mauris ut leo. Cras
viverrametus rhoncus sem. Nulla et lectus vestibulumurna fringilla ultrices. Phasellus eu
tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra
ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor
nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec
varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam.
Duis eget orci sit amet orci dignissim rutrum.

Box 3.1
Common options for histogram include displaying counts instead of percents, or varying bar color. It is also possible to
change default bin size. When nint=nrow(dataset), we have a so-called high-density vertical lines, much like when using
plot(..., type="h").

type="count"

waiting

C
o
u
n
t

0

20

40

60

40 50 60 70 80 90 100

col="steelblue"

waiting

P
e
rc

e
n
t

o
f

T
o
ta

l

0

5

10

15

20

25

40 50 60 70 80 90 100

border=NA, nint=12

waiting

P
e
rc

e
n
t

o
f

T
o
ta

l

0

5

10

15

20

40 50 60 70 80 90 100

nint=nrow(dataset)

waiting

P
e
rc

e
n
t

o
f

T
o
ta

l

0

2

4

6

40 50 60 70 80 90 100

p <- histogram(∼ waiting , data=faithful , lwd=5, type="percent",

border="white")

x.breaks <- p$panel.args.common$breaks

y.values <- table(cut(faithful$waiting , breaks=x.breaks))

update(p, panel=function(...) {

panel.histogram(...)

panel.text(x.breaks+diff(x.breaks)[1]/2,

y.values/nrow(faithful)*100,

as.character(y.values), cex=.8 , adj=c(.5 ,0))

})

waiting

P
e
rc

e
n
t

o
f

T
o
ta

l

0

5

10

15

20

25

40 50 60 70 80 90 100

13

31
33

22

14

67

63

24

5

13

The following example demonstrates how a de-
fault histogram displaying percent data can be
annotated with counts data. This is intended to
show howwe can steal away default setting to dis-
play the distribution of discrete values.)

Lattice

x <- rnorm (80, mean =12, sd=2)

histogram(∼ x, type="density" , border=NA ,

panel=function(x, ...) {

panel.histogram(x, ...)

panel.mathdensity(dmath=dnorm , col="#BF3030",

args=list(mean=mean(x),sd=sd(x)))

})

An example where we superimposed a normal
density with parameters estimated from the sam-
ple.)

x

D
e
n
si

ty

0.00

0.05

0.10

0.15

6 8 10 12 14 16

3.3 Density plots

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

.¹

¹BW Silverman. Density Estimation. London: Chapman and Hall, 1986. isbn: 978-0412246203.

Lattice

densityplot(∼ waiting , data=faithful)

waiting

D
e
n
si

ty

0.00

0.01

0.02

0.03

40 60 80 100

The default panel relies on R’s density func-
tion. As such, the default kernel is gaussian

with 𝑛 = 512 equally spaced at which the
density is estimated. The choice of the band-
with follows Silverman’s rule of thumb, namely
min(0.9SD, IQR/1.34𝑛). An alternative bandwith
can be selected using bw="SJ".

densityplot(∼ waiting , data=faithful , plot.points="rug")

waiting

D
e
n
si

ty

0.00

0.01

0.02

0.03

40 60 80 100

Instead of a mini stripchart displayed at 𝑦 = 0,
a “rugplot” can be preferred. It might help spot-
ting possible local concentration of data points,
compared to simple jittered points.

densityplot(∼ waiting , data=faithful , plot.points=FALSE , ref=TRUE)

waiting

D
e
n
si

ty

0.00

0.01

0.02

0.03

40 60 80 100

Sometimes, adding a reference line crossing at
𝑦 = 0 may be informative, especially for multi-
modal distributions. It is advised to avoid plot-
ting individual observations like was done in the
preceding graphics.

An alternative way of presenting density plots are so-called “violin plots”² which feature

²JL Hintze and RD Nelson. “Violin Plots: A Box Plot-Density Trace Synergism”. In: The American Statistician
52.2 (1998), pp. 181–184.

Lattice

the main components of a boxplot (§ 3.5) and a kernel density estimation, and “bean
plots”³ where density trace are mirrored to form a polygon shape. The latter presents the
advantage of allowing asymmetrical plotting depending on a grouping factor.

bwplot(∼ waiting , data=faithful , panel=panel.violin)

A simple “violin” panel.

waiting

50 60 70 80 90

bwplot(∼ waiting , data=faithful ,

panel=function(... , box.ratio) {

panel.violin(... , col="transparent" , varwidth=FALSE ,

box.ratio=box.ratio)

panel.bwplot(... , fill=NULL , box.ratio=.15)})

A simple “violin” panel.

waiting

50 60 70 80 90

3.4 Quantile and related probability plots

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
³P Kampstra. “Beanplot: A Boxplot Alternative for Visual Comparison of Distributions”. In: Journal of Statis-
tical Software 28 (2008). url: http://www.jstatsoft.org/v28/c01.

Lattice

fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

qqmath(∼ rnorm (60))

qnorm

rn
o
rm

(6
0

)

-3

-2

-1

0

1

2

-2 -1 0 1 2

A simple quantile plot of 60 gaussian variates.
The theoretical quantiles of an𝒩 (0; 1) are shown
on the 𝑥-axis.

x <- rt(500 , df=20)

qqmath(∼ x, pch="+" , abline=c(0,1), dist=qnorm)

qnorm

x

-4

-2

0

2

-2 0 2

+

+ +

+++

+++
++++

++++++
+++++

+++++++++++
+++++++
++++++++++

+++++
+++++++++++++++++

++++++++++++++
++++++++++++
++++++++++++++++++++

+++++++++++++++++++++
++++++++++++++
+++++++++++++++++++++++

++++++++++++++++++++
++++++++++++++++++++++

++++++++++++++++++++++
+++++++++++++++++++++++++++

++++++++++++++++++++++
++++++++++++++++++++

++++++++++++++++++++++++++++
++++++++++++++
++++++++++++++
++++++++++++++++

+++++++++++++++++++++++
++++++++++++++

++++++++
++++++++++++++

+++++++++
++++++
+++++++++

++++
+++++
+++
+++++++

++++
++
+++

++
+

+

+ +
This is basically asking to draw the sameQQ-plot,
but with a higher number of data points com-
ing from a different distribution (Student 𝑡(20)).
A reference line is added to facilitate compar-
ison. This basically shows how closely the 𝑡-
distribution can be approximated by an 𝒩 (0; 1)
when 𝑛 gets very large.

Lattice

qqmath(∼ x, pch="+" , abline=c(0,1), dist=qnorm ,

f.value=ppoints (100))

Same as above but subsampling data points.

qnorm
x

-2

0

2

-2 -1 0 1 2

+

+
+

+
++++

++
+
+++

++
++++

+++++
+++

+++
+++
+++++

++++
+++++

+++++
+++
+++++

++++
++++

++
+++

++++
++++

+++
+++

++
+
++

+
+

+
+ +

+

+

qqmath(∼ Hwt , data=cats , subset=Sex == "F" , dist=qunif)

cats. The heart and body weights of
samples of male and female cats used
for digitalis experiments. The cats were
all adult, over 2 kg body weight.

Here is one way to show the cumulative distri-
bution function (CDF) of some sample dataset.
Note that we need to explicitly need to ask qqmath

to use the Uniform distribution as a reference.

qunif

H
w

t

6

8

10

12

0.0 0.2 0.4 0.6 0.8 1.0

ecdfplot(∼ Hwt , data=cats , subset=Sex == "F")

An alternative way of plotting the empirical CDF
is to rely on the ecdfplot function from the
latticeExtra package.

Hwt

E
m

p
ir

ic
a
l
C

D
F

0.0

0.2

0.4

0.6

0.8

1.0

6 8 10 12

Lattice

3.5 Boxplots

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

bwplot(∼ height , data=women)

height

60 65 70

women. This data set gives the
average heights and weights for
American women aged 30-39.

Boxplot are shown in horizontal mode by
default. Internally, the boxplot.stats func-
tion is used so that hinges corresponds to the
first and third quartile while notches extends
to ±1.58IQR/√𝑛. It provides a visual summary
analogous to Tukey’s five number (see fivenum).

bwplot(∼ height , data=women , box.ratio=.5)

height

60 65 70

This is the same picture but with a thinner box.
When there are several boxplots to draw side by
side, this might be useful.

Lattice

bwplot(∼ height , data=women , box.ratio=.5 ,

scales=list(x=list(limits=c(50 , 80) , at=seq (50 , 80 , by =2))))

A more detailed 𝑥-scale has been created (with-
out prejudice to its usefulness) by simply updat-
ing the scales= argument.

height

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

bwplot(∼ height , data=women , aspect=.5 ,

panel=function(x, ...) {

panel.bwplot(x, pch="|" , ...)

panel.points(mean(x), 1, pch=19, cex =1)

})

It is possible to alter the way boxplot are drawn,
but also the statistical summaries that are dis-
played. For instance, in the above code, we com-
puted themean (drawn as a vertical bar inside the
box) in addition to the median. Of note, if there
are missing values, we should add na.rm=TRUE

when calling mean(x).
height

60 65 70

3.6 Time series

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut,
placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque.
Pellentesque habitantmorbi tristique senectus et netus et malesuada fames ac turpis eges-
tas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna
fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretiumquis, viverra ac, nunc. Praesent eget semvel leo ultrices bibendum. Ae-
nean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur
auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan
eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Lattice

xyplot(sunspot.year)

Time

0
5

0
1

0
0

1
5

0

1700 1750 1800 1850 1900 1950 2000

sunspot.year. Yearly numbers of
sunspots from 1700 to 1988.

A simple time-series is displayed as a lineplot,
but taking care of arranging the 𝑥-axis for time
measurements.

xyplot(sunspot.year , aspect=.3 , scales=list(y=list(rot =0)))

Time

0

50

100

150

1700 1750 1800 1850 1900 1950 2000

A more comprehensive picture after aspect ra-
tio has been lowered so as to better highlight the
cyclic component.

xyplot(sunspot.year , strip=FALSE , cut=list(number =2, overlap=.05))

Time

0

50

100

150

1700 1750 1800 1850

1850 1900 1950

0

50

100

150

The same time series cut into two pieces with 5%
of overlap.

Lattice

xyplot(sunspot.year , strip=FALSE , strip.left=TRUE ,

cut=list(number =2, overlap=.05))

Now we highlight explicitely that the two series
of measurements are related by adding a colored
ribbon denoting time period.

Time

0

50

100

150

1700 1750 1800 1850

ti
m

e

1850 1900 1950

0

50

100

150

ti
m

e

xyplot(zoo(discoveries))

discoveries. The numbers of “great”
inventions and scientific discoveries in
each year from 1860 to 1959.

The zoo has to be loaded before using the
above command. Briefly, it takes care of han-
dling time-series data correctly, and it is inter-
faced to lattice’s xyplot as an S3 method (see
xyplot.zoo).

Time

0
2

4
6

8
1

0
1

2

1860 1880 1900 1920 1940 1960

xyplot(zoo(discoveries), panel=panel.xyarea)

It is possible to add a shaded area by using a spe-
cific panel function from the latticeExtra pack-
age.

Time

0
2

4
6

8
1

0
1

2

1860 1880 1900 1920 1940 1960

Lattice

xt <- ts(cumsum(rnorm (200 * 12)))

p <- xyplot(xt)

Time

-2
0

0
2

0
4

0
6

0
8

0

0 500 1000 1500 2000 2500

The lattice package works with ts objetcs too.

xt <- zoo(accdeaths)

xyplot(xt , type=c("l","g"), ylab="Total accidental deaths")

Time

T
o
ta

l
a
cc

id
e
n
ta

l
d

e
a
th

s

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
1

1
0

0
0

1973 1974 1975 1976 1977 1978 1979

accdeaths. A regular time series
giving the monthly totals of accidental

deaths in the USA.

Another regular time series is.

Lattice

xyplot(xt ,

panel=function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.lines(rollmean(zoo(y, x), 3), lwd=2, col =1)

})

The same dataset with a rolling mean (of width
3).

Time

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
1

1
0

0
0

1973 1974 1975 1976 1977 1978 1979

xyplot(xt) +

layer(panel.tskernel(x, y, c=3, col=1, lwd =2))

Discrete symmetric smoothing kernels, available
in latticeExtra, can be used instead of a rolling
mean. Here an approximate gaussian filter was
used to highlight the seasonal component. Of
note, the above R commandmakes use of a layer,
see also Chapter 6

Time

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0
1

1
0

0
0

1973 1974 1975 1976 1977 1978 1979

Lattice

xyplot(ts.union(sunspot.year , lag10=lag(sunspot.year , 10)) ,

superpose=TRUE , panel=panel.superpose ,

panel.groups=function(... , group.number) {

if (group.number == 1) panel.xyarea(...)

else panel.xyplot(...)

} , border=NA , cut=list(n=3, overlap =0), aspect="xy",

par.settings=simpleTheme(col=c("grey","black"), lwd=c(5 ,2)))

Time

0
50

100
150

1700 1720 1740 1760 1780

time

1800 1820 1840 1860 1880

0
50
100
150

time

0
50

100
150

1900 1920 1940 1960 1980

time

sunspot.year
lag10sunspot.year. Yearly numbers of

sunspots between 1700 and 1988.
More complex arrangement can be done, again
with the latticeExtra panel function. Here,
yearly numbers of sunspots are shown together
with a lagged version (10 years).

flow <- ts(filter(rlnorm (200 , mean = 1) , 0.8 , method = "r"))

xyplot(flow ,

panel=function(x, y, ...) {

panel.xblocks(x, y > mean(y), col="lightgray")

panel.xyplot(x, y, ...)

})

Time

0
1

0
2

0
3

0
4

0
5

0

0 50 100 150 200

blabla blabla

Lattice

CHAPTER4

Two-way graphics

This chapter covers graphical displays for two-way relationships, possibly by considering
additional variables (numerical or categorical) to highlight ternary relationships. Two-
way graphics are not limited to numerical variables as we may be interested in showing
the relationships between two ordered categorical variables, two unordered or “nominal”
variables. Moreover, as stated above, categorical or discretized variables can be used to
provide additional information on top of a line- or scatter-plot by simply varying point
size, point or line colors, and so on. Of course, we could extend this idea to the point
of displaying sixth dimensions in a single graph (e.g., using symbol with varying length
and width, color, and shading pattern). But, such a complex graph would likely be poorly
readable and uninformative in the end. So, this chapter basically provides necessary R
command to create line-plot, scatter-plot, bar-plot, dot-plot

31

Lattice

4.1 Lineplots

xyplot(uptake ∼ conc , data=CO2 , groups=Treatment , type="a")

conc

u
p

ta
ke

10

20

30

40

200 400 600 800 1000

Automatic averaging.

4.2 Scatterplots

The basic R command for displaying a two-way scatterplot is xyplot. A command like
xyplot(y ∼ x) will produce a 2D plot almost identical to what would be obtained using
base graphics, plot(x, y). However, the default layout is generally better and it looks
more pretty.

xyplot(dist ∼ speed , data=cars)

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

cars. The data give the speed of cars
and the distances taken to stop. Note

that the data were recorded in the
1920s.

This basic scatterplot show default options when
calling the xyplot command. The formula inter-
face is used to plot dist (𝑦-axis) as a function of
speed (𝑥-axis), with automatic determination of
axis units.

Lattice

xyplot(dist ∼ speed , data=cars , pch=rbinom(nrow(cars), 1, .5)+1)

Wepick a random symbol (# = 1, △ = 2) for each
observation, using the pch= argument. In fact,
this argument is transferred to the panel.xyplot
function that acts as the default panel function.
Note that the vector of symbols should have the
same length as the 𝑥 and 𝑦 components, oth-
erwise recycling occurs. It is, however, not a
good idea to manipulate the pch= (or col=, see
below) argument, and it is better to rely on the
par.settings= parameter since it allows to use
custom themes which will facilitate the display of
legend. speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

xyplot(dist ∼ speed , data=cars ,

col=with(cars , cut(speed , breaks=quantile(speed),

include.lowest=TRUE)))

Color (col=) of each observation depends of the
quartile they belong to. Note that passing colors
this way will override default theming options.

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

xyplot(dist ∼ speed , data=cars , pch=19,

groups=with(cars , cut(speed , breaks=quantile(speed),

include.lowest=TRUE)))

This is basically the same code as previously
shown except that we replaced the col= argument
by groups=. This has the advantage of observing
the current theme, and this will further facilitate
the insertion of an automatic legend.

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

Lattice

xy <- as.data.frame(replicate (2, rnorm (1000)))

xyplot(V1 ∼ V2 , data=xy , pch=19, alpha=.5)

V2

V
1

-2

0

2

-2 0 2

When there are a high proportion of points
that overlap, using transparent color may be
useful. We replaced the default symbol with
its filled counterpart. An equivalent way of
specifying transparent color would be to use
rgb(.22, .49, .72, alpha=.5).

dat <- data.frame(replicate (2, rnorm (500)) , z=sample (0:40 , 500 , T))

cols <- colorRampPalette(brewer.pal (11, "RdBu"))(diff(range(dat$z)))

xyplot(X1 ∼ X2 , data=dat , col=cols[dat$z], pch=19, alpha=.5)

X2

X
1

-2

0

2

-3 -2 -1 0 1 2

Alpha-blending and color palette might be com-
bined as well. Here, we used a pre-defined color
scheme (Red to Blue) from the RColorBrewer

package. As the selected palette has only 11 dif-
ferent colors, whereas the grouping factor, z, has
40 levels, we use linear interpolation to increase
the number of available colors.

xyplot(Sepal.Length ∼ Petal.Length , data=iris , jitter.x=TRUE ,

amount=.2)

Petal.Length

S
e
p

a
l.
Le

n
g

th

5

6

7

8

1 2 3 4 5 6 7

iris. This famous (Fisher’s or
Anderson’s) iris data set gives the

measurements in centimeters of the
variables sepal length and width and
petal length and width, respectively,

for 50 flowers from each of 3 species of
iris. The species are Iris setosa,

versicolor, and virginica.

As an alternative to transparent colors, one may
resort on “jittering”. This is also useful when not
so many points are available but show few varia-
tions on one dimension. The panel.xyplot func-
tion uses jitter.x= and jitter.y= to vary 𝑥 and
𝑦 coordinates by adding a random shift drawn
from a uniform distribution, 𝒰(−𝑎, 𝑎), where 𝑎
stands for the amount= parameter.

Lattice

xyplot(dist ∼ speed , data=cars ,

panel=function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.rug(x, y, ...)

})

It is possible to superimpose the univariate distri-
bution of both series of measurement using “rug”
plots. Usually, they remain quite discreet (read
non-invasive) but provide additional information
to spot possible asymmetry. We need to ask ex-
plicitly for a custom panel, though.

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

xyplot(log(Volume) ∼ log(Girth), data=trees)

trees. This data set provides
measurements of the girth, height and
volume of timber in 31 felled black
cherry trees. Note that girth is the
diameter of the tree (in inches)
measured at 4 ft 6 in above the ground.

Asimple log-log plot. Note thatwewould have to
manually update the scales= component to pro-
vide more suitable annotations for the 𝑥 and 𝑦-
axis.

log(Girth)

lo
g

(V
o
lu

m
e
)

2.5

3.0

3.5

4.0

2.2 2.4 2.6 2.8 3.0

Lattice

xyplot ((1:200)/20 ∼ (1:200)/20, type=c("p" , "g"),

scales=list(x=list(log =10) , y=list(log =10)) ,

xscale.components=xscale.components.log10.3 ,

yscale.components=yscale.components.log10.3)

(1:200)/20

(1
:2

0
0

)/
2

0

0.1

0.3

1

3

10

0.1 0.3 1 3 10

Instead of transforming variables in the formula,
it is easier and safer to do this through the
scales= parameter. The [x|y]scale.components
are convenient functions that help to annotate
axes with correct units and tick marks spacing.

xyplot(dist ∼ speed , data=cars , scales=list(tck=c(1 ,0)))

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

To get ride of ticks on opposite axes, we can
change default values for tck= in the scales=

component. The tck= parameter controls the
length of tick marks; however, with a vector of
length 2 it can be used to deal with left/bottom
and right/top axis separately.

xyplot(dist ∼ speed , data=cars , scales=list(alternating =3))

speed

d
is

t

5 10 15 20 25

0

20

40

60

80

100

120

5 10 15 20 25

0

20

40

60

80

100

120

To annotate both axes, we can alter the
alternating= parameter. In most case, however,
adding grid lines in the background should pro-
vide enough information. Using alternating=2

would reverse the annotation of axis (right/top
instead of left/bottom).

Lattice

4.3 Barcharts

spray.df <- aggregate(count ∼ spray , data=InsectSprays , FUN=mean)

barchart(count ∼ spray , data=spray.df)

InsectSprays. The counts of insects in
agricultural experimental units treated
with different insecticides.

Before using barchart with one continuous and
one categorical variable, we need to consider how
to aggregate data, in other words what summary
measure to consider.

co
u
n
t

5

10

15

A B C D E F

barchart(spray ∼ count , data=spray.df)

To reverse 𝑥 and 𝑦 axis, we just need to use the
exchange the right-hand and left-hand side of the
preceding formula.

count

A

B

C

D

E

F

5 10 15

4.4 Dotcharts

low ink-ratio

Lattice

dotplot(spray ∼ count , data=InsectSprays)

count

A

B

C

D

E

F

0 5 10 15 20 25

Instead of barcharts, it is usually more easy to use
Cleveland’s dotcharts as they allow to show indi-
vidual (within level) variations.

dotplot(spray ∼ count , data=InsectSprays , lty =2)

count

A

B

C

D

E

F

0 5 10 15 20 25

The main panel can be customized easily. For ex-
ample, we can change the way horizontal lines are
drawn.

dotplot(spray ∼ count , data=InsectSprays , type=c("p","a"))

count

A

B

C

D

E

F

0 5 10 15 20 25

It is also possible to show aggregated data, like av-
erage count per level, using panel.average. The
default fun= argument is mean, but we could use
median instead.

Lattice

4.5 Line fits

In this section, we discuss the addition of model fit to existing two-way graphics. For
example, it may be interesting to show a regression or lowess¹ line when using xyplot.

xyplot(dist ∼ speed , data=cars , type=c("p","smooth"))

An adaptive loess smoother superimposed on top
of a standard scatterplot.

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

xyplot(dist ∼ speed , data=cars , type=c("p","smooth"), span=1/3)

Window span can be controlled using the span=

argument, where lower valuemeansmore sentiv-
ity to local variations.

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

¹WS Cleveland. “Robust locally weighted regression and smoothing scatterplots”. In: Journal of the American
Statistical Association 74 (1979), pp. 829–836.

Lattice

xyplot(dist ∼ speed , data=cars , type=c("p","r"))

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

Regression fit can be shown using the same idea,
through the type= argument.

4.6 Time series

xt <- ts(matrix(cumsum(rnorm (200 * 12)) , ncol =2))

xyplot(xt)

Time

-3
0

-2
0

-1
0

0
1

0

Series 1

-5
0

-4
0

-3
0

-2
0

-1
0

0
1

0

0 200 400 600 800 1000 1200

Series 2

blabla blabla.

Lattice

xyplot(xt , scales=list(y="same"), type=c("l","g"))

blabla blabla.

Time

-40

-20

0

Series 1

0 200 400 600 800 1000 1200

-40

-20

0

Series 2

xyplot(xt , layout=c(2 ,1))

blabla blabla.

Time

-3
0

-2
0

-1
0

0
1

0

0 200 400 600 800 1200

Series 1

0 200 400 600 800 1200

-5
0

-4
0

-3
0

-2
0

-1
0

0
1

0

Series 2

xyplot(EuStockMarkets , scales=list(y="same"))

EuStockMarkets. Contains the daily
closing prices of major European stock
indices: Germany DAX (Ibis),
Switzerland SMI, France CAC, and UK
FTSE. The data are sampled in business
time, i.e., weekends and holidays are
omitted.

blabla blabla.

Time

2000
4000
6000
8000

DAX

2000
4000
6000
8000

SMI

2000
4000
6000
8000

CAC

1992 1994 1996 1998

2000
4000
6000
8000

FTSE

Lattice

xyplot(EuStockMarkets , superpose=TRUE , auto.key=list(columns =2))

Time

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1992 1994 1996 1998

DAX
SMI

CAC
FTSE blabla blabla.

horizonplot(EuStockMarkets , colorkey=TRUE)

Time

D
A

X
S
M

I
C

A
C

1992 1994 1996 1998

FT
S
E

− 3Δ i

− 2Δ i

− 1Δ i

origin

+ 1Δ i

+ 2Δ i

+ 3Δ i blabla blabla.

horizonplot(EuStockMarkets , colorkey=TRUE) + infolayers

Time

1
5
1
9
.1

1628.8

D
A

X

2
2
4
4
.6

1678.1

S
M

I

8
7
1
.9

1772.8

C
A

C

1992 1994 1996 1998

1
2
4
5
.1

2443.6

FT
S
E

− 3Δ i

− 2Δ i

− 1Δ i

origin

+ 1Δ i

+ 2Δ i

+ 3Δ i blabla blabla.

4.7 Level plot

Level plot can be used to display data summaries as “heatmap”. Here are two examples:

Lattice

data(Harman23.cor)

levelplot(Harman23.cor$cov , scales=list(x=list(rot =45)) ,

xlab="" , ylab="")

Harman23.cor. A correlation matrix of
eight physical measurements on 305
girls between ages seven and
seventeen. HH Harman. Modern Factor
Analysis. Third ed. Table 2.3. University
of Chicago Press, 1976

Level plots can be used to display correlationma-
trix in a concise way (not unlike symnum).

height

arm.span

forearm

lower.leg

weight

bitro.diameter

chest.girth

chest.width

he
ig

ht

ar
m

.s
pa

n

fo
re

ar
m

lo
w
er

.le
g

w
ei

gh
t

bi
tr
o.

di
am

et
er

ch
es

t.g
irt

h

ch
es

t.w
id

th

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cols <- colorRampPalette(brewer.pal (8, "RdBu"))

levelplot(Harman23.cor$cov , scales=list(x=list(rot =45)) ,

xlab="" , ylab="" , col.regions=cols)

The default color scheme can be changed easily.
Here, we are using a Red-Blue color palette, from
the RColorBrewer package. (Note that it intro-
duces little changes compared to the preceding
plot because a custom theme is currently in use
for the whole textbook.)

height

arm.span

forearm

lower.leg

weight

bitro.diameter

chest.girth

chest.width

he
ig

ht

ar
m

.s
pa

n

fo
re

ar
m

lo
w
er

.le
g

w
ei

gh
t

bi
tr
o.

di
am

et
er

ch
es

t.g
irt

h

ch
es

t.w
id

th

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sometimes, it is helpful to reorder the entries in a correlation matrix or a two-way cross-
classification. This can be done using order or custom packages, like

It is also possible to combine a dendrogram with a distance matrix, and add this cluster-
ing information to an heatmap. Here is an illustration using the mtcars dataset and the
dendrogramGrob function from latticeExtra.

Lattice

Lattice

CHAPTER5

Multi-way graphics

This chapter focus on multi-variable displays, where usually two-way graphics are con-
ditioned on values taken by one or more variables, or a combination thereof. These so-
called “ displays” are very good at conveying information about trend or variation be-
tween two numerical variables across the levels of a third factor.

5.1 Parallel displays

5.2 Scatterplot matrix

5.3 Three-way tabular data

5.4 N-way data

45

Lattice

Lattice

CHAPTER6

Customizing theme and panels

47

Lattice

Hmisc
CHAPTER7

The Hmisc plotting functions

7.1 Two-way graphics

Hmisc provides automatic labelling of curves or levels of grouping factor, which are used
as in standard lattice graphics (groups=), without the need to rely on the directlabels

package.

Let us assume that we defined the following helper functions to compute standard error
of a mean and the corresponding 95% confidence interval:

se <- function(x) sd(x)/sqrt(length(x))

f <- function(x) c(mean = mean(x),

lwr = mean(x) - 1.96 * se(x),

upr = mean(x) + 1.96 * se(x))

49

Hmisc

d <- with(birthwt , summarize(bwt , race , f))

xYplot(Cbind(bwt , lwr , upr) ∼ numericScale(race , label = "Ethnicity"),

data = d, type = "b" , keys = "lines",

ylim = range(apply(d[, 3:4] , 2 , range)) + c(-1,1) * 100,

scales = list(x = list(at = 1:3 , labels = levels(d$race))))

Ethnicity

B
a
b
y
 w

e
ig

h
t

2600

2800

3000

3200

White Black Other

The race variable needs to be converted to a nu-
merical variable for proper scaling on the 𝑥-axis.
Note that labeling of the 𝑥-axis can be done at the
same time. The keys= argument controls the type
of drawing, while type= behaves similarly to the
lattice plotting parameter.

Here is another example using a grouping factor.

d <- with(birthwt , summarize(bwt , llist(race , smoke), f))

xYplot(Cbind(bwt , lwr , upr) ∼ numericScale(race), groups = smoke ,

data = d, type = "l" , keys = "lines" , method = "alt bars",

ylim = c(2200 , 3600) ,

scales = list(x = list(at = 1:3 , labels = levels(d$race))))

race

B
a
b
y
 w

e
ig

h
t

2400

2600

2800

3000

3200

3400

White Black Other

No
Yes

bla bla.

Ggplot

CHAPTER8

The ggplot2 package

8.1 Why ggplot2

How does ggplot2 differ from lattice? Both packages rely on the grid system. How-
ever, unlike lattice, ggplot2 makes heavy use of the so-called “Grammar of Graphics”
approach.¹

8.2 Core components of a ggplot graphic

¹L Wilkinson. The Grammar of Graphics. Springer, 2005.

51

Ggplot

Ggplot

CHAPTER9

Interactive and dynamic displays

9.1 Exploratory data analysis

9.2 Brushing and linking

9.3 The ggobi toolbox

53

Ggplot

Ggplot

Index

abline, 18, 19
adj, 14
aggregate, 9, 33
alpha, 12, 30
alternating, 32
amount, 30
args, 15
as.character, 14
as.numeric, 8
aspect, 11, 12, 21, 22, 26
at, 21, 45, 46
auto.key, 38

barchart, 33
border, 14, 15, 26
box.ratio, 17, 20, 21
boxplot.stats, 20
breaks, 14, 29
brewer.pal, 30, 39
bw, 16
by, 9, 13, 21

c, 9, 14, 18, 19, 21, 24–26, 32,
34–37, 45, 46

cex, 12, 14, 21
col, 13–15, 17, 25, 26, 29, 30
col.regions, 39
colorkey, 38
colorRampPalette, 30, 39
columns, 38
contents, 6, 7
cumsum, 24, 36
cut, 8, 14, 22, 23, 26, 29
cut2, 8

data, 13, 14, 16, 17, 19–21,
28–36, 39, 45, 46

data.frame, 5, 8, 30
density, 16
densityplot, 16
describe, 6, 8
df, 18
diff, 14, 30
dist, 18, 19, 28, 29, 31, 32, 35,

36
dmath, 15
dotplot, 34
draw, 12

ecdfplot, 19
else, 26

f.value, 19
factor, 7, 11, 12
fill, 17
filter, 26
fivenum, 20
formula, 5
FUN, 33
fun, 34
function, 14, 15, 17, 21, 25,

26, 31

group.number, 26
groups, 28, 29, 45, 46

histogram, 13–15
horizonplot, 38
horizontal, 12

if, 26
include.lowest, 8, 29

jitter.data, 11, 12
jitter.x, 30
jitter.y, 30

labels, 45, 46
lag, 26
layer, 25
layout, 37
levels, 45, 46
limits, 21
list, 12, 15, 21–23, 26, 32,

37–39, 45, 46
log, 31, 32
lty, 34
lwd, 14, 25, 26

matrix, 36
mean, 15, 21, 26, 33, 34
median, 34
method, 26, 45, 46

na.rm, 21
ncol, 36
nint, 14
nrow, 14, 29
number, 22, 23

overlap, 22, 23, 26

panel, 12–15, 17, 21, 23, 25,
26, 31

panel.average, 34
panel.bwplot, 17, 21
panel.groups, 26
panel.histogram, 14, 15
panel.lines, 25
panel.mathdensity, 15
panel.points, 21
panel.rug, 31
panel.text, 14
panel.tskernel, 25
panel.xblocks, 26
panel.xyarea, 23, 26
panel.xyplot, 25, 26, 29–31
par.settings, 26, 29
pch, 12, 18, 19, 21, 29, 30
plot, 14, 28
plot.points, 16
ppoints, 19

qnorm, 18
qqmath, 18, 19

quantile, 29
qunif, 19

range, 30
rbinom, 29
ref, 16
replace, 11, 13
replicate, 30
rgb, 30
rlnorm, 26
rnorm, 15, 18, 24, 30, 36
rollmean, 25
rot, 22, 39
rt, 18

sample, 11, 13, 30
scales, 12, 13, 21, 22, 31, 32,

37, 39, 45, 46
sd, 15
seg.col, 13
seg.lwd, 13
seq, 13, 21
simpleTheme, 26
span, 35
strip, 22, 23
strip.left, 23
stripchart, 12
stripplot, 11–13
subset, 9, 19
summary.formula, 6
sunflowerplot, 13
superpose, 26, 38
symnum, 39

table, 14
tapply, 9
tck, 32
transform, 8
treillis, 41
ts, 24, 26, 36
ts.union, 26
type, 14, 15, 24, 28, 32, 34–

37, 45, 46

update, 14

varwidth, 17

with, 29, 45, 46
within, 8

xlab, 12, 39
xscale.components, 32
xy, 12, 30
xyplot, 22–26, 28–32, 35–38

ylab, 24, 39
yscale.components, 32
yscale.components.log10.3,

32

zoo, 5, 23–25

55

