29 references, last updated Wed Apr 18 16:13:22 2012
- C Ambroise and GJ McLachlan.
Selection bias in
gene extraction on the basis of microarray gene-expression data.
Proceedings of the National Academy of Sciences,
99(10):6562–6566, 2002.
- T Bo
and I Jonassen.
New
feature subset selection procedures for classification of expression
profiles.
Genome Biology, 3(4):0017.1–0017.11, 2002.
- L. Breiman.
Bagging predictors.
Machine Learning, 26:123–140, 1996.
(PDF, 197687 bytes)
- L Breiman.
Random forests.
Machine Learning, 45(1):5–32, 2001.
(PDF, 123819 bytes)
- L Breiman.
Statistical modeling:
The two cultures.
Statistical Science, 16(3):199–231, 2001.
- F Bunea,
Y She, H Ombao, A Gongvatana,
K Devlin, and Cohen R.
Penalized least squares regression methods and applications to neuroimaging.
NeuroImage, 55:1519–1527, 2011.
(PDF, 349432 bytes)
- E Candes and T Tao.
The Dantzig selector: statistical estimation when p is much larger than
n.
The Annals of Statistics, 35(6):2312–2351, 2007.
(PDF)
- R. Díaz-Uriarte and
S. Alvarez de Andrés.
Gene selection
and classification of microarray data using random forest.
BMC Bioinformatics, 7(3), 2006.
- J Fan and
R Li.
Variable selection via nonconcave penalized likelihood and its oracle
properties.
Journal of the American Statistical Association, 96:1348–1360,
2001.
(PDF, 399298 bytes)
- JH Friedman, T Hastie, and
R Tibsharini.
Regularization paths for
generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1), 2010.
- JH Friedman.
Fast sparse regression and classification.
In In Proceedings of the 23rd International Workshop on Statistical
Modelling, pages 27–57, 2008.
(PDF)
- WJ Fu.
Penalized regressions: The bridge versus the Lasso.
Journal of Computational and Graphical Statistics, 7(3):397–416,
1998.
(PDF, 194601 bytes)
- I Guyon, S Gunn,
M Nikravesh, and L A Zadeh, editors.
Feature Extraction: Foundations And Applications.
Springer-Verlag, 2006.
- FE Harrell.
Regression Modeling Strategies.
Springer, 2001.
- T Hastie, R Tibshirani, and
J Friedman.
The Elements
of Statistical Learning.
Springer, 2ème edition, 2009.
- AE Hoerl and RW Kennard.
Ridge regression: Applications to nonorthogonal problems.
Technometrics, 12(1):69–82, 1970.
(PDF, 619213 bytes)
- T Hothorn, F Leisch,
A Zeilis, and K Hornik.
The design and analysis of benchmark experiments.
Journal of Computational and Graphical Statistics, 14(3):675–699,
2005.
(PDF, 589534 bytes)
- M Jelizarow, V Guillemot,
A Tenenhaus, K Strimmer, and A-L
Boulesteix.
Over-optimism
in bioinformatics: an illustration.
Bioinformatics, 26(16):1990–1998, 2010.
- M Kyung,
J Gill, M Ghosh, and G Casella.
Penalized regression, standard errors, and bayesian lassos.
Bayesian Analysis, 5(2):369–412, 2010.
(PDF, 511582 bytes)
- T N Lal,
O Chapelle, J Weston, and
A Elisseeff.
Embedded methods.
In I Guyon, S Gunn, M Nikravesh,
and L A Zadeh, editors, Feature Extraction: Foundations
And Applications, pages 137–162. Springer-Verlag, 2006.
- A Long,
H Mangalam, B Chan, L Tolleri,
G Hatfield, and P Baldi.
Improved statistical
inference from dna microarray data using analysis of variance and a
Bayesian statistical framework.
Journal of Biological Chemistry, 276:19937–19944, 2001.
- A M Molinaro, R Simon, and
R M Pfeiffer.
Prediction
error estimation: A comparison of resampling methods.
Bioinformatics, 21(15):3301–3307, 2005.
- AY Ng and
MI Jordan.
On discriminative vs. generative classifiers: A comparison of logistic
regression and naive bayes.
Neural Information Processing Systems, pages 841–848, 2001.
(PDF, 188721 bytes)
- D Paul,
E Bair, T Hastie, and
R Tibshirani.
Pre-conditioning for feature selection and regression in high-dimensional
problems.
The Annals of Statistics, 36:1595–1618, 2008.
(PDF, 985163 bytes)
- H Schwender, K Ickstadt, and
Rahnenführer.
Classification with high-dimensional genetic data: Assigning patients and
genetic features to known classes.
Biometrical Journal, 6:911–926, 2008.
(PDF, 168927 bytes)
- G Seni
and J Elder.
Ensemble Methods in Data Mining.
Morgan & Claypool, 2010.
- R Tibshirani.
Regression shrinkage and selection via the Lasso.
Journal of the Royal Statistical Society, Series B, 58:267–288,
1996.
(PDF, 2030051 bytes)
- S Varma and R Simon.
Bias in error
estimation when using cross-validation for model selection.
BMC Bioinformatics, 7(91), 2006.
- H Zou and
T Hastie.
Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society, Series B,
67(2):301–320, 2005.
(PDF)