Here is a stack of papers about multivariate data analysis (grabbed from a course by Gilbert Saporta that was helded in 2010, CNAM Paris) that I should (have) read.
- Jensen, D.R. and Ramirez, D.E. (2008). Anomalies in the Foundations of Ridge Regression. International Statistical Review, 76(1), 89-105.
- Hyvarinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13, 411-430.
- Scholkopf, B., Smola, A., and Muller, K.R. (1998). Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 10, 1299-1319, 1998.
- Louw, N. and Steel, S.J. (2006). Variable selection in kernel Fisher discriminant analysis by means of recursive feature elimination. Computational Statistics & Data Analysis, 51(3), 2043-2055.
- Bastien, P., Tenenhaus, M., and Esposito-Vinzi, V. (2005). PLS Generalized linear regression, Computational Statistics & Data Analysis, 48, 17-46.
- Krieger, A.M. and Green, P.E. (1999). A Generalized Rand-Index Method for Consensus Clustering of Separate Partitions of the Same Data Base. Journal of Classification, 16, 63-89.
- Diana, G. and Tommasi, C. (2002). Cross validation methods in principal component analysis: a comparison. Statistical Methods and Applications, 11(1), 71-82.
- Ben-Hur, A., Horn, D., Siegelman, H.T., and Vapnik, V. (2001). Support Vector Clustering. Journal of Machine Learning Research, 2, 125-137.
- Gardner, S. and Le Roux, N.J. (2005). Extensions of Biplot Methodology to Discriminant Analysis. Journal of Classification, 22(1), 59-86.
- Tarpey, T. and Kinateder, K.K.J. (2003). Clustering Functional Data. Journal of Classification, 20(1), 93-114.
- Beh, E.J. and D’Ambra, L. (2009). Some Interpretative Tools for Non-Symmetrical Correspondence Analysis. Journal of Classification, 26(1), 55-76.
- van Rosmalen, J., Groenen, P.J.F., Trejos, J., and Castillo, W. (2009). Optimization Strategies for Two-Mode Partitioning. Journal of Classification, 26(2), 155-181.
- Rosipal, R. and Trejo, L.J. (2001). Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. JMLR Special Issue on Kernel Methods.
- Vicari, D. and Vichi, M. (2009). Structural Classification Analysis of Three-Way Dissimilarity Data. Journal of Classification, 26(2), 121-154.
- Buja, A. and Swayne, D. (2002). Visualization Methodology for Multidimensional Scaling. Journal of Classification, 19(1), 7-43.
- van de Velden, M. (2004). Optimal Scaling of Paired Comparison Data. Journal of Classification, 21(1), 89–109.
- Ye, J. (2005). Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems. Journal of Machine Learning Research, 6, 483-502.
- Aguilera, A.M., Escabias, M., and Valderrama, M.J. (2006). Using principal components for estimating logistic regression with high-dimensional multicollinear data. Computational Statistics & Data Analysis, 50(8), 1905-1924.
- Bougeard, S., Hanafi, M., and Qannari, E.M. (2008). Continuum redundancy–PLS regression: A simple continuum approach. Computational Statistics & Data Analysis, 52(7), 3686-3696.
- Piccarreta, R. (2008). Classification trees for ordinal variables. Computational Statistics, 23(3), 407-427. See also the rpartOrdinal R package and the associated JSS paper.
- Escabias, M., Aguilera, A.M., and Valderrama, M.J. (2007). Functional PLS logit regression model. Computational Statistics & Data Analysis, 51(10), 4891- 4902.
- Brusco, M.J., Singh, R., and Steinley, D. (2009). Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis. Psychometrika, 74(4), 705-726.
- Hwang, H. (2009). Regularized Generalized Structured Component Analysis. Psychometrika, 74(3), 517-530.
- Steinley, D. and Brusco, M.J. (2008). Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures. Psychometrika, 73(1), 125-144.
I should add some additional papers of mine soon. In the meantime, here are two must have books:
- Le Roux, B. and Rouanet, H. (2004). Geometric data analysis: from correspondence analysis to structured data. Kluwer Academic Publishers.
- Greenacre, M. and Blasius, G. (2006). Multiple correspondence analysis and related methods. Chapman and Hall.
This year, I should also try to go deeper into the ade4 package. This monograph by Susan Holmes provides a useful summary of the duality diagram as used in ade4
: Multivariate Data Analysis: The French Way (2005).
See Also
»
Psychometrics, measurement, and diagnostic medicine
»
Intelligence, the psychometric view
»
Recent lectures on HRQL, Genetic Epidemiology, and Psychometrics
»
The New Psychometrics
»
Quality of Life Psychometrics and Beyond