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1 Introduction

The use of graphs to represent statistical models dates back to Wright (1921) and has been
the focus of considerable activity in recent years. In particular, attention has been directed at
graphical “conditional independence” models and at the application of such graphical models
to probabilistic expert systems. These developments are conveniently summarised in the
recent books by Whittaker (1990), Pearl (1988), and Neapolitan (1990), and in Spiegelhalter
et al. (1993). Rather less well known are the breakthroughs that have also taken place
in the development of a Bayesian framework for such models (Dawid and Lauritzen, 1993,
Spiegelhalter and Lauritzen, 1990). The motivational applications for this work have been
in expert systems, where the promise of a model that can update itself as data becomes
available, has generated intense interest from the artificial intelligence community (Charniak,
1991, Kornfeld, 1991). However, the application of this work to a broader range of discrete
data problems has been largely overlooked.

The purpose of this article is to show how the Bayesian graphical framework unifies and
greatly simplifies many standard discrete data problems such as Bayesian log linear modeling
with either complete or incomplete data, model selection and accounting for model uncer-
tainty, closed population estimation, multinomial estimation with misclassification, double
sampling and database error prediction. This list by no means exhausts the possible appli-
cations.

This is a methodological article. Our objective is to demonstrate the diverse range
of potential applications, alert the reader to an exciting new methodology and hopefully
stimulate further development.

1.1 An Outline of the Basic Framework

At the risk of over-simplification we sketch the basic framework for the Bayesian analysis of
graphical models with a simple medical example involving dichotomous variables:

In recent years, Extracorporeal Shockwave Lithotripsy (ESWL) has become the
treatment modality of choice for kidney stones (Kiely et a,1990). In the standard
setup, the lithotripter operator first locates the stone via a real time ultrasound
image. In the style of a video game, the operator then uses a joystick to identify
the stone on the image and hundreds of high frequency shockwaves are focussed at
the targeted location. Each individual shockwave passes harmlessly into the body
at a separate location, but at the point of focus (hopefully the stone) sufficient
energy is generated to disintegrate the stone. The quality of the ultrasound image
affects the chance of disintegration. Subsequent clearance of the stone from the
urinary tract (the desired outcome) is usually preceded by disintegration.

A possibly reasonable model for this situation is given in Figure 1. This directed graph
represents the assumption that Clearance (C') and Ultrasound Image Quality (/) are condi-
tionally independent given Disintegration (D). The joint distribution of the three variables
factors accordingly:

pr(L, D, C) = pr(l)pr(D | Npr(C | D). (1)



Figure 1: Lithotripsy: A Simple Discrete Graphical Model

At the time of treatment the primary quantity of interest is pr(C | I), the probability of
successful outcome given the quality of the ultrasound image (good/bad).

The approach to this problem pioneered by Spiegelhalter (1986) is based entirely on
subjective expert knowledge. To fully specify the joint distribution in (1), five probabilities
must be elicited:

pr(C'| D), pr(C' [ D), pr(D | I),pr(D | I) and  pr(I) (2)

where the vinculum denotes negation. The calculation of pr(C | I') could now proceed by
writing down the eight probabilities of the joint distribution and marginalising over D. In
general however, this may not be possible because the storage requirements for the joint
distribution become prohibitively expensive as the number of variables increases. Spiegel-
halter (1986) described a method for converting the directed representation in Figure 1 to
an undirected representation corresponding to a specific log linear model. The calculation of
arbitrary conditional probabilities can then proceed via a series of local calculations thereby
sidestepping the need to store the full joint distribution. See Dawid (1992) and Lauritzen
(1992) for recent discussions of similar algorithms.

An obvious development of the above framework is to update knowledge about the model
parameters as data accumulate thereby providing an extension from probabilistic reasoning
to statistical analysis. The use of point estimates for the probabilities in (2) precludes
the possibility of such updating so instead we elicit prior distributions for these quantities.
In effect the probabilities become random variables and can be added to the graph as in
Figure 2. Within this framework Spiegelhalter and Lauritzen (1990) show how independent
beta distributions placed on these probabilities can be updated locally to form the posterior
as data becomes available. This provides an attractive strategy for Bayesian analysis of
discrete data. The graph provides a powerful medium with which to communicate model
assumptions and derive model properties. Informative prior distributions can realistically
be elicited in terms of quantities that are well understood rather than, for example, the
cryptic “u”-parameters of log linear models (Bishop et al., 1975). Furthermore, the required
computations are straightforward.

In later sections we extend this framework and apply it to a variety of problems. Some
common themes will be apparent across these applications:

First, the importance of recognising and incorporating model uncertainty has been ac-

knowledged by many authors. Hodges (1987), Raftery (1988b), and Draper (1993) argue



Figure 2: Lithotripsy: Bayesian Graphical Model

convincingly that ignoring model uncertainty can lead to underestimation of the uncertainty
about quantities of interest. In the context of the lithotripsy example, inference about the
relationship between image quality and clearance could be greatly affected by the addition of
a link from [ to C'. Thus uncertainty about the conditional independence of €' and [ given
D should be accounted for in subsequent inference. A complete Bayesian solution to this
problem involves averaging over all possible models when making inferences about quantities
of interest, much as one would integrate out a nuisance parameter in a hierarchical model.
Indeed Hodges (1987) comments that “what is clear is that when the time comes for betting
on what the future holds, one’s uncertainty about that future should be fully represented,
and model [averaging] is the only tool around.” In many applications, however, because of
the size of the model space and awkward integrals, this averaging will not be a practical
proposition, and approximations are required. Draper (1993) describes “model expansion”:
averaging over all plausible models in the neighborhood of a “good” model. Madigan and
Raftery (1991) describe an approach for Bayesian graphical models that involves seeking out
the most plausible models and averaging over them. Raftery (1992) applies this to structural
equation models. Here, we propose a Markov chain Monte Carlo approach which provides a
workable approximation to the complete solution. The point is that with Bayesian graphical
models, accounting for model uncertainty is entirely possible. This will be demonstrated in
later applications.

Second, in several of the applications we consider, the presence of missing data and/or
latent variables produces ostensibly insurmountable analytic obstacles. Such complexity
frequently rules out the consideration of larger models involving many covariates and other
generalisations. We will show how Bayesian graphical models coupled with Markov chain
Monte Carlo techniques provide a conceptually simple approach to such problems and greatly



extend the range of possible applications.

Finally, Bayesian graphical models provide an exciting opportunity to implement the
complete Bayesian paradigm. The elicitability of informative prior distributions motivates
many of the constructions we present in later sections.

In summary, there are many advantages to analysing discrete data with Bayesian graph-
ical models:

e Most model assumptions are entirely transparent when a graphical representation of

the model is used (Lange, 1992);

e Bayesian graphical models and attendant modeling strategies provide a unified and
conceptually simple framework for a diverse range of applications;

e Model uncertainty can be accounted for in a straightforward fashion;
e Missing data and latent variables are catered for;
o Informative subjective knowledge can realistically be elicited and incorporated.

The primary disadvantage is increased computational complexity. However, with the advent
of Markov chain Monte Carlo methods for Bayesian analysis and the widespread availability
of immense computing power, this problem is somewhat mitigated.

1.2 Plan

In the next section, we define graphical models and describe more fully the Bayesian frame-
work sketched above. The closed population estimation problem is presented in Section 3.
In Section 4 we consider a simple application concerned with the estimation of multino-
mial probabilities subject to misclassification. Next we consider a range of double sampling
problems and in Section 6 we re-examine some recent work concerning the estimation of
errors in databases. Finally we discuss possible extensions of this work and other potential
applications.

2 An Outline of the Technical Framework

2.1 Independence Graphs and Factorisations

Graphical models are a class of statistical models defined by collections of conditional inde-
pendencies which can by represented by a graph (see Appendix I for a summary of the graph
terminology we use). We will only consider graphs that are either directed and acyclic or
undirected in what follows, although combinations of the two have also been studied—see
for example, Whittaker (1990). In either case, each node in the graph will correspond to a
random variable X,,v € V taking values in a sample space X,,.

In the directed case (see for example Figure 1), the parents pa(v) of a node v are those
nodes from which edges point into v. These parents are taken to be the only direct influences
on v, and thus, v is independent of its non-descendents given its parents.



This property implies a factorisation of the joint distribution of X,,v € V, which we

pr(V) = I pr(v | pa(v)). (3)

veV

denote by pr(V), given by:

The class of models which can be defined in this way were introduced by Kiiveri et al. (1984)
and are a subclass of their recursive causal models. Determining conditional independencies
in large directed graphs can be difficult. However, Lauritzen et al. (1990) show that for sets
A, B and S C V, A and B are conditionally independent given S, whenever A and B are
separated by S in a “moralized” undirected graph containing AU B U .S and their ancestors.
A moralized graph is formed by placing edges between nodes which share a child and then
dropping the edge directions.

In the undirected case, we take each node to be conditionally independent of all others
given its neighbours. For a more detailed exposition of Markov properties with respect to
directed and undirected graphs, we refer the reader to Lauritzen et al. (1990).

In the case where the random variables (X,),v € V are all discrete, the class of models
defined by the undirected graphs are a subclass of the hierarchical log linear models where
the cliques of the graph correspond to the maximal terms in the log linear model.

In what follows we will make extensive use of “decomposable models” for which the
underlying undirected graph is chordal. These are the “closed-form” log linear models for
which parameters can be estimated without recourse to iterative methods. The key property
of such models is a simple factorisation of the joint density:

H?:l pr(CZ)
H?:? pr(SZ)

where Cy, ..., C, is a so-called “pertect” clique ordering and S5,..., 5, are the corresponding
clique separators. The simplicity of such decomposable models has been exploited in a num-
ber of contexts—see for example Lauritzen and Spiegelhalter (1988), Dawid and Lauritzen

(1993), Madigan and Mosurski (1990, 1991) and Madigan and Raftery (1991).

pr(V) = (4)

2.2 Bayesian Framework for Directed Graphical Models

Here we describe the Bayesian framework for directed graphical models. Consider a directed
graphical model for a set of discrete random variables X,,v» € V. The assumptions of the
model imply that the joint distribution of X,,v € V is given by Equation (3).

Spiegelhalter and Lauritzen (1990) introduced a parametrisation for pr(v|pa(v)) whereby
the relationship between a node v and its parents pa(v) is fully specified by a possibly
vector-valued parameter 6, € ©,. This leads to a conditional distribution for V':

pr(V10) = [ pr(vlpa(v),.)., ()

veV

where 6 has components 8, corresponding to each node v € V. For the lithotripsy example
of Section 1, we have O = {pr(C | D),pr(C | D)},0p = {pr(D | I),pr(D | I)} and
0r = {pr(1)}.



Spiegelhalter and Lauritzen (1990) make two key assumptions which greatly simplify sub-
sequent analysis. The first assumption is that of global independence whereby the parameters
f, are assumed mutually independent a priori. This assumption alone allows us to calculate
the likelihood for a single case:

/prv@dG—/Hpr vpa(v), 0,)pr(0,)do, —Hpr v|pa(v))

where
(v|pa(v) /pr (v|pa(v), 8,)pr(6,)do,,.

The second assumption is that of local independence whereby components of 8, corre-
sponding to the elements of the state space of pa(v) are assumed to be mutually independent
a priori. Both of these assumptions were embodied in the lithotripsy example of Figure 2,
where, for instance, we have that pr([) is independent of pr(D | I) (global independence)
and pr(D | I) is independent of pr(D | T) (local independence).

Now consider a conditional probability distribution pr(v|pa(v)t,8F) = @} for a specific
state pa(v)* of pa(v). We assume that 6 has a Dirichlet distribution D[], ..., \f] where k
is the number of states of v (alternative parametrisations are also considered by Spiegelhalter
and Lauritzen, 1990). This prior is conjugate with multinomial sampling, and it follows that:

pr(vlpa(o)t) = Af/ 30 A

thereby providing a simple method for calculating the likelihood.
If we observe one data case where v is in state j and the parent state is pa(v)*, the
posterior distribution of 8% is given by:

0F o ~ DI, A+ 1, 0],

In general, the posterior distributions are found by incrementing each parameter )\;" by the
number of cases with that configuration of v and pa(v). If the data are complete, updating
each component of # in this fashion preserves local and global independence.

2.3 Bayesian Framework for Undirected Decomposable Graphi-
cal Models

Following Dawid and Lauritzen (1993), we consider a decomposable model M for a set of
random variables X,,v € V. Let 7 = [],cy &, denote the set of possible configurations of
X. Denote by 60(z) the probability of a state ¢« € Z. Then 6(¢) is determined by the clique
marginal probability tables 8+, C € C where C denotes the set of cliques of M:

[Moec Oc(ic)
Hses GS(iS) ’

S denotes the system of clique separators in an arbitrary perfect ordering of C.

0(i) = ieT.



For each clique C' € C, let D(A¢) denote the Dirichlet distribution for ¢ with density

00|)\C H 00 . /\C (ic)-1 ,

ZCGIC

where A¢(i¢) > 0 for all i¢ € Z¢.
Now let us suppose that the collection of specifications D(A¢),C € C are constructed in
such a way that for any two cliques C' and D in C we have:

Ac(tenp) = Ap(icap); (6)

that is, if the cliques C' and D overlap, then the parameters A¢ and Ap are such that each
implies the same marginal distribution for #cnp. Dawid and Lauritzen (1993) have shown
that there exists a unique “hyper-Dirichlet” distribution for # over M such that fs has the
marginal density D(A¢) for all C € C.

In practice, one would construct a hyper—Dirichlet distribution by first identifying a
perfect ordering of the cliques {C4,...,C,}. Place a Dirichlet distribution D(A¢, ) on 8¢y
next place a Dirichlet distribution D(A¢,) on f¢,, with parameters constrained by (6) and
realizations constrained so that 0, n¢, is identical for 8¢, and 8¢,. For each subsequent clique
C;, place a Dirichlet on f¢, such that the parameters and the realizations of that distribution
are consistent with those specified for the previous cliques.

This prior distribution is conjugate with multinomial sampling. Simple expressions for
posterior distributions and likelihoods are provided in Dawid and Lauritzen (1993).

2.4 Directed vs Undirected Graphical Models

In general, probability distributions can have conditional independence properties more com-
plex than can be represented with either an undirected or directed graph; see Pearl (1988).
However, it is always possible to provide a graph for a probability distribution such that any
independence assumptions present in the graph are true for the distribution—Pearl (1988)
calls such a graph an [-map. A trivial example of this would be a fully connected undi-
rected graph, which makes no independence assumptions at all. Thus, we can always find a
graphical model which makes no false independence assertions, although it may have more
parameters than would be strictly necessary. If the graph is such that it is an [-map for a
distribution, and every independence relationship in the distribution is represented in the
graph, Pearl (1988) calls it a perfect map of the distribution.

Additionally, there are distributions such that there is an undirected graph that is a
perfect map, but no directed graph that is a perfect map, and vice versa. These two types of
graphs can express different kinds of relationships, which raises the question of which type
should be used for any given problem.

In problems where some variables obviously are determined before others, or cause others,
the directed graphs allow a direct representation of these assumptions. For example, if there
is a relationship between the kidney stone disintegration (D) kidney stone clearance (C'), it
is certainly D which influences or causes or precedes ', and not the other way around; thus,
an edge between them should point from D to C.



Undirected models, in contrast, are best suited to problems where the variables are
determined simultaneously, or perhaps are both influenced by some variable which is not
explicitly modeled. For example, it does not make sense to say that an individual’s eye color
influences or causes his or her hair color, or vice versa, and so a relationship between these
variables is better represented as an undirected edge.

Many problems will include both kinds of relationships, motivating the use of graphs
with both directed and undirected edges (Frydenberg, 1990). Currently we are extending
the class of Bayesian graphical models to include such graphs.

2.5 Accounting for Model Uncertainty

A typical approach to data analysis is to initially carry out a model selection exercise leading
to a single “best” model and to then make inference as if the selected model were the true
model. However, as a number of authors have pointed out, this paradigm ignores a major
component of uncertainty, namely uncertainty about the model itself (Breslow, 1991, Draper
et al. (1987), Draper, 1993, Hodges, 1987, Moulton, 1991, Raftery, 1988b). As a consequence
uncertainty about quantities of interest can be underestimated. For striking examples of this
see Regal and Hook (1991), Draper (1993), Miller (1984), and York and Madigan (1992).

There is a standard Bayesian way around this problem. If A is the quantity of interest,
such as a structural characteristic of the system being studied, a future observation, or the
utility of a course of action, then its posterior distribution given data D is:

pr(A | D) = 3" pr(A | My, D)pr(My | D). (")

k=1

This is an average of the posterior distributions under each of the models, weighted by their
posterior model probabilities. In equation (7), M, ..., Mk are the models considered, the
marginal likelihood for model My is given by:

Rr(D | My, )pr(My)
Sy pr(D | Myjpr(My)’

pr(My | D) = (8)

where

pr(D | My) = [ pr(D | 0. My)pr(6 | My)do. 9)

6 is the vector of cell probabilities, pr(6 | My) is the prior for # under model My, pr(D | §, My)
is the likelihood, and pr(Mjy) is the prior probability that My is the true model.

Furthermore, averaging over all the models in this fashion provides better predictive
ability, as measured by a logarithmic scoring rule, than using any single model M; (Madigan
and Raftery, 1991).

However, as Breslow (1991) points out, implementation of the above strategy is difficult.
There are two primary reasons for this: first, the integrals in (9) can in general be hard to
compute, and second, the number of terms in (7) can be enormous.

We consider two approaches to this problem. Madigan and Raftery (1991) do not attempt
to approximate (7) but instead, appealing to standard norms of scientific investigation, adopt
a model selection procedure. This involves averaging over a much smaller set of models than

9



in (7) and delivers a parsimonious set of models to the data analyst, thereby facilitating
effective communication of model uncertainty. A second approach we propose here does
involve approximating (7) with a Markov chain Monte Carlo method.

Before sketching the two approaches, we note that both involve repeated calculation of
terms like:

pr(Mo | D)

pr(My | D)
where My and M, are graphical models which differ by one link. In both the directed and
undirected (decomposable) case these ratios can be calculated in a highly efficient manner
entirely through local computations. For details, see Madigan and Raftery (1991).

Two basic principles underly the approach of Madigan and Raftery (1991). Firstly, they
argue that if a model predicts the data far less well than the model which provides the best
predictions, then it has effectively been discredited and should no longer be considered. Thus
models not belonging to:

(10)

, (o mas{pr(Mi | D))
A‘{M’“‘ pr(0ly | D) SC}’ ()

should be excluded from equation (7) where C' is chosen by that data analyst. Secondly,
appealing to Occam’s razor, they exclude complex models which receive less support from
the data than their simpler counterparts. More formally they also exclude from (7) models
belonging to:

pr(M; | D)

=< M, :dM, M, C My, ————= > 1 12
B { k IEA, 1 C k7pI’(Mk|D)> ( )

and equation (7) is replaced by
pr(A [ D)= > pr(A| My, D)pr(M; | D) (13)

MpeA
where

A= A\B. (14)

This greatly reduces the number of models in the sum in equation (7) and now all
that is required is a search strategy to identify the models in A. Two further principles
underly the search strategy. Firstly, if a model is rejected then all its submodels are re-
jected. This is justified by appealing to the independence properties of the models. The
second principle — “Occam’s Window” — concerns the interpretation of the ratio of poste-
rior model probabilities pr(My | D)/pr(My | D). Here My is one link “smaller” than M.
The essential idea is shown in Figure 3: If there is evidence for My then M is rejected but to
reject My we require strong evidence for the larger model, M;. If the evidence is inconclusive
(falling in Occam’s Window ) neither model is rejected. Madigan and Raftery (1991) adopted
21—0 for Oy, and 1 for Opg.

These principles fully define the strategy. Typically the number of terms in (7) is reduced
to fewer than 20 models and often to as few as two. Madigan and Raftery (1991) provide
a detailed description of the algorithm and show how averaging over the selected models

10



Inconclusive Evidence

A
A

Strong Evidence for M; Evidence for M,

Figure 3: Occam’s Window: Interpreting the log posterior odds

provides better predictive performance than basing inference on a single model in each of
the examples they consider.

Our second approach is to approximate (7) using Markov chain Monte Carlo methods,
such as in Metropolis et al. (1953) and Hastings (1970), generating a process which moves
through model space. Specifically, let M denote the space of models under consideration.
We can construct a Markov chain {M(¢)},7 = 1,2,... with state space M and equilibrium
distribution pr(M; | D). Then for a function ¢(M;) defined on M, if we simulate this Markov
chain for t =1,..., N, the average:

G = %;gmm (15)

is an estimate of F(g(M)). Applying the ergodic theorem (see Breiman, 1968, or Chung,
1967) for finite irreducible Markov chains,

G — E(g(M)) a.s. as N — oo.

To compute (7) in this fashion set g(M) = pr(A | M, D).

To construct the Markov chain we define a neighbourhood nbd(M) for each M € M
which is the set of models with either one link more or one link fewer than M and the model
M itself. Define a transition matrix ¢ by setting ¢(M — M') = 0 for all M’ & nbd(M)
and ¢(M — M') non—zero for all M’ € nbd(M). If the chain is currently in state M,
we proceed by drawing M’ from ¢(M — M'); if M’ is “legal” (it contains no directed
cycles in the directed case and is chordal in the undirected case) it is accepted with some
positive probability chosen so that the process has the correct stationary distribution. Some
possibilities for these acceptance probabilities are given by Hastings (1970).

The irreducibility of the transition matrix ¢ is obvious in the directed case. For the
decomposable case it follows from Lemma 5 of Frydenberg and Lauritzen (1989).

The choice of which approach to use — model selection or Markov chain Monte Carlo
model composition — will depend on the particular application. The model selection proce-
dure will be most useful when one is interested in making inferences about the relationships
between the variables. Averaging over all models (by brute force or Monte Carlo) will be

11



appropriate for making predictions or decisions when the posterior distribution of some
quantity is of more interest than the nature of the “true” model. However, each approach is
flexible enough to be used successtully for inference and prediction.

Madigan et al. (1993a) contrast the two approaches. In each of the three applications
they consider the Monte Carlo approach provides better predictive ability than the Occam’s
window approach. However, either method provides improved predictive performance over
inference based on any single model that might reasonably have been selected.

We note that similar approaches are suggested by Cooper and Herskovits (1992).

3 Bayesian Graphical Models for Closed Population
Estimation

We now introduce the first of several applications demonstrating the utility of Bayesian
graphical models.

3.1 Introduction

One approach to estimating the size of a closed population is to use several methods to
“capture” individuals in the population. Although these might be actual physical captures,
here we will consider a capture to be the occurrence of a person’s name on an administrative
list. If it is possible to uniquely identify the individuals or their capture histories, then the
data can be represented as a contingency table with one dimension for each capture method.
The count for each cell gives the number of individuals with a particular capture history. Of
course, the count for the cell in which individuals were not caught by any of the methods is
unknown. The goal of the analysis is to estimate the number of individuals in this cell and
thence in the population.

For example, consider estimating the rate at which the birth defect spina bifida occurs.
Hook et al (1980) gathered records on persons born in upstate New York between 1969
and 1974 with this defect from birth certificates (B), death certificates (D), and medical
rehabilitation records (R). These different records were compared, and each individual with
the defect was classified as to whether or not they were found in each list. The data is given
in Table 1, where a value of 0 indicates that an individual was not found in that list, and
a 1 indicates that he or she was found. A total of 626 individuals were found in the three
record systems considered, out of a total of 863,143 live births; the question is, how many
more individuals were missed by all three?

This is sometimes called the multiple record systems (MRS) problem and is related to
experiments where animals are physically captured or tagged (El-Khorazaty et al, 1977). The
essential difference between the two problems is that there will almost always be dependence
between some of the lists in an MRS because of relationships between the administrative
systems and heterogeneity in the population. In contrast, when dependence between captures
is modeled in the capture-recapture literature it is usually done in a simple sequential manner,
with one capture probability for individuals that have been captured before and another for
those who have not yet been captured (Wolter, 1986; Pollock and Otto, 1983; Otis et al

12



R=0 R=1

B=0,D=0 ? 60
B=0,D=1 19 1
B=1,D=0] 247| 112
B=1,D=1] 142 12

Table 1: Spina Bifida data

1978). For an MRS, this approach will not be as useful, because the different administrative
systems may be operating simultaneously and the dependencies between them may follow
some more general pattern.

Log linear models provide a flexible approach to this problem, in which dependence
between lists is explicitly modeled (Fienberg, 1972, Bishop et al, 1975, Hook et al, 1980).
However, as highlighted in Section 2.5, to ignore model uncertainty in this context is to ignore
an important aspect of uncertainty in predicting the population size. Inadequacies of model
selection routines for MRS problems have been illustrated by Regal and Hook (1991), and
are discussed in more detail by York and Madigan (1992). Similar complaints about model
selection with standard capture-recapture models can be found in Merkins and Anderson
(1988).

Undirected decomposable Bayesian graphical models, as described in Section 2 provide a
flexible model class for this problem, facilitating the incorporation of prior expert knowledge
and accounting for model uncertainty.

Denoting the total population size by N, and following the notation of Section 2, our
objective is to evaluate the posterior distribution of N, given the observed data, D:

pr(N | D) = 3 pr(N | My, D)pr(M; | D). (16)

k=1

We assume a priori that N is independent of the model My, and thus (16) can be written
as:

pr(N | D) = 32 pe(D | M, Nppe(M)pr(N)/pr(D), (17)
where:
pr(D | My, N) = /pr(D 10, My, N)pr(0 | My)de. (18)

Here, 0 is the vector parameter of probabilities which define M), and is assumed to be
independent of N. York and Madigan (1992) provide formulae for pr(D | 6, My, N) and
pr(D), and explore the consequences of various prior assumptions for pr(Mj) and pr(N) and
for pr(6 | My), in the context of several examples.

The component distributions of pr(8 | My) all involve the probability of capture on one or
more lists. One practical difficulty that arises is that the structure of this prior distribution
depends on My; recall that a Dirichlet distribution is required for each clique in the graph
of M. This necessitates the elicitation of a different prior distribution for every model.
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York and Madigan (1992) describe a pragmatic solution to this problem. Essentially, our
approach is to elicit a prior distribution for pr(6 | My/), where My is a model with high prior
probability, chosen for convenient elicitation. Prior distributions for # under all the other
models are then derived from pr(f | M), via a simple information theoretic argument. See
Spiegelhalter et al. (1993) for a similar approach.

Elicitation for undirected graphs can be difficult. In the context of the spina-bifida
example above, a link from say, B to D, could require the elicitation of a prior distribution
over the 2 x 2 table spanned by B and D. Madigan and Raftery (1991) describe in detail an
alternative approach whereby the prior distribution is elicited in the context of a directed
graph. Subsequently, prior distributions for the components of § implied by the undirected
model are derived.

The key point is that the elicitation of informative prior distributions, while not with-
out its difficulties, is possible. This is not the case for the equivalent distributions in the
conventional log-linear framework.

3.2 Example : Spina Bifida

The results of a Bayesian graphical model analysis of the spina bifida example of Table 1 are
given in Table 2 and Figure 4. In the figure, the value of

P(N | D, My)P(My | D)

is plotted for any model M} with non-negligible posterior probability. These curves show
both the shape of the posterior distribution of N for particular models, and, by the area
beneath them, their relative contribution to the overall posterior distribution. The sum of
these curves gives the full posterior, averaged over all models. In this analysis, uniform prior
distributions were adopted for the components of # under the largest model, all models were
assumed equally likely a priori and an informative prior distribution, based on historical
data, was adopted for N. For details we refer the reader to York and Madigan (1992).

We note that the posterior distributions for NV under the three leading models are centered
at different locations, and estimation of V conditional upon one model would depend a great
deal upon the particular model chosen. Averaging over models, on the other hand, gives us
a single posterior distribution that accurately reflects our uncertainty about the correct
model. A detailed coverage analysis is described in York and Madigan (1992) which shows
that model averaging provides prediction intervals which are much better calibrated than
those based on a single model.

The posterior means and standard deviations for the probability that an individual will
be found via any particular list are given in Table 3. It is awkward to come up with such
“efficiency” estimates in the conventional log-linear modeling framework. In contrast, the
methods described here, directly and easily produce efficiency estimates for each list.

If we use our estimate of N to compute a prevalence rate for spina bifida for the population
of all live births, we arrive at an estimate of 0.847 per 1000 births, with 2.5th and 97.5th
posterior percentiles being 0.790, 0.923. In comparison to the estimate of 0.725 per thousand
if we assume that no cases were missed, there is substantial evidence that more than one case
per ten thousand is missed; and this is for a population count based on three separate lists.

14



Posterior

N

Model Prob. N 1 25%, 97.5%

0.373 | 731 | (701, 767)

0.301 | 756 | (714.,811)

0.281 | 712 | (681,751)

0.036 | 697 | (628,934)

Sd

Model Averaging — 731 | (682,797)

Table 2: Summaries of the posterior distributions of N for the spina bifida data for all models
with posterior probability greater than 0.01. N is a Bayes estimate, minimizing a relative
squared error loss function

Posterior | Posterior

List Mean Std. Dev
Birth Certificate 0.699 0.032
Death Certificate 0.284 0.020
Medical Records 0.258 0.019

Table 3: Posterior mean and standard deviation for the probability that a given list will
correctly identify an individual with spina bifida
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Figure 4: Posterior distribution for the number of cases of spina bifida for different models.
“Full Posterior” shows the posterior distribution averaged over all the decomposable Bayesian
graphical models
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The estimate of 0.699 for the efficiency of birth certificates alone indicates that around 30%
of the total cases would be overlooked if that registry were the sole source of information.

3.3 Example : Spina Bifida with Covariate

One of the benefits of using Bayesian graphical models for discrete data analysis is the
comparative ease with which models can be expanded. To illustrate this point we consider
the addition of a covariate, race, in the spina bifida example. The data presented in Table 4
are from Hook et al. (1980). In addition to the data in the table, there are 5 individuals
for whom we have no information on race. These five individuals had the following values
for (B,D,R) : (1,0,1), 3 x(1,0,0), and (0,1,0). We compute the posterior distribution for
N by summing over all 2° possible values of race for these 5 incomplete cases, as well as
summing over the possible races of the unobserved individuals.

Whites Blacks & Others
R=0|R=1||R=0 R=1

B=0,D=0 7 52 7 3
B=0,D=1 15 3 3 1
B=1,D=0 230 107 14 4
B=1,D=1 134 12 8 0

Table 4: Spina Bifida data, by Race

The posterior distribution for N is displayed in Figure 5. Features of the posterior
distribution and the models which make the greatest contribution are given in Table 5.
Most of the models which had high posterior probability in the previous analysis still have
high probability here. The notable additions are several models with an interaction between
birth certificates B and ethnicity, £. The posterior probability of a link between the two is
0.69; the posterior probability of any other link with F is less than 0.10. The models with a
link to ethnicity tend to have higher estimates for the non-white population than the other
models, indicating that the administrative lists seem to be missing proportionately more
non-whites than whites. However, inclusion of this information does not cause a change in
the overall estimate of the population size.

Efficiencies of the various lists, broken down by race, are given in Table 6: birth certificates
are considerably less effective in identifying spina bifida cases in non-whites.

3.4 Why Bayesian graphical models?

Bayesian graphical models allow for flexible modeling of inter-list dependencies together with
an effective medium to communicate these dependencies, i.e., a graph. Furthermore, infor-
mative expert knowledge can be expressed directly in terms of well-understood quantities,
distributions for other quantities of interest such as list efficiencies are easily computed,
inclusion of covariates is straightforward (including missing values), and crucially, model
uncertainty can be effectively communicated and accounted for.
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Figure 5: Posterior distribution for the number of cases of spina bifida, with race as a
covariate. Labels refer to those in Table 5; the scaled posterior distributions for models IV,
V. and VII have been added together since they share nearly the same posterior probability
and shape.
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Posterior Whites | Non-whites

N N N

Label Model Prob N | (2.5, 97.5) N N

I 0.223 731 | (701,767) 683 48
II 0.185 756 | (714,811) 699 56
I1I 0.168 712 | (681,751) 660 30
IV @ 0.062 731 | (701,767) 683 48
\% 0.061 732 | (702,769) 677 54
VI @ 0.052 756 | (714,811) 706 49
VII 0.050 731 | (701,767) 678 52
VIII @ 0.047 712 | (681,751) 665 46

Model Avg [ 731 (689,794) | 679 51

Table 5: Summaries of the posterior distributions of N for the spina bifida data for all models
with posterior probability greater than 0.01 with race as a covariate.

Whites Non-whites
List Mean | Std. Dev | Mean | Std. Dev
Birth Certificate | 0.710 0.033 0.565 0.107
Death Certificate | 0.285 0.020 0.282 0.031
Medical Records | 0.259 0.019 0.263 0.031

Table 6: Posterior mean and standard deviation for the probability that a given list will
correctly identify an individual with spina bifida
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The restriction to decomposable models may be a real concern for some applications.
For the spina-bifida example, York and Madigan (1992) show that inclusion of the non-
decomposable no-third-order-interaction model has little impact on the results.

This methodology could be applied to capture-recapture models as well. The sequential
nature of those captures make directed graph representations more natural-see for example

Rodrigues et al. (1988).

4 Multinomial Misclassification

In this section we present a simple application of Bayesian graphical models with latent
variables from the field of systematic musicology. There are many approaches one could
adopt for this problem. The advantages of the Bayesian graphical model approach are that
firstly, the conceptual simplicity of the framework allows for the elicitation of informative
priors and secondly, unlike more conventional approaches, Bayesian graphical models can
easily be scaled up to include covariates and alternative sampling schemes.

Our application concerns music expectancy, a psychological construct which has been of
interest to musicians since the early part of this century (Bissell, 1921). Music expectancy
is defined as the cognitive awareness of a future event to come in music as we listen, an
awareness not only of the nature of the event to come, but also of when the event will
occur (Carlsen et al., 1992). Narmour (1990) has postulated certain patterns that musical
expectancy should exhibit; these theories have intensified interest in the subject. Carlsen
(1981) and Unyk and Carlsen (1987) reported analyses of large music expectancy data sets.
We set out to re-analyse this data in the light of Narmour’s new work, and to assess what
level of support the data provided for his theories (Madigan et al., 1992).

The melodic expectancy studies of Carlsen all utilised the so-called “production re-
sponse”: participants in those studies were presented with the 25 two-note melodic be-
ginnings possible within the octave (12 ascending, 12 descending and the unison). They
were instructed to consider that interval as the beginning of an interrupted melody and were
asked to sing immediately (in tempo) the expected continuation of the melody as if it had
not been interrupted. The data is represented as a 25 x 25 table of counts representing the
25 melodic beginnings and the 25 melodic continuations within an octave (less than 1% of
the melodic continuations were outside an octave). The particular data set we consider was
collected in the U.S.A. and contains 12,262 data points.

Narmour’s “Implication-Realization” model consists of a template within this table where
expectancies are postulated to exist—see Figure 6.

Our initial effort to contrast the data with Narmour’s model was to construct an equiv-
alent empirical model by simply thresholding the data. Cells with fewer than a certain level
of counts were deemed to be ‘outside’ and the remainder ‘inside’ an empirical template.
However, the arbitrariness of the threshold was problematic. For a significant number of
cells it was unclear whether they represented genuine expectancies and should therefore be
included in the template, or whether the counts were spurious and recorded in error.

Further consideration suggested that such errors could arise in two ways: firstly, singer
error (SE) whereby the subject could fail to produce the note they had intended to sing, and
secondly, listener error (LE) whereby the listener transcribing the subject’s sung response
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Figure 6: Narmour’s Model. The “#”’s represent melodic continuations that are predicted
to occur for each melodic beginning. No predictions are made for the octave and tritone

melodic beginnings (-12, -6, 6, and 12).
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could make an error. For a single melodic beginning this sugegsts the graphical model of
Figure 7. Here, LE and SE are binary variables indicating whether or not a listener error or
a singer error have occurred, MCr is the true unobservable melodic continuation and MCp
is the recorded (fallible) melodic continuation.

Figure 7: Initial Graphical Expectancy Model

This model requires the elicitation of prior distributions for pr(MCg | MCp,LE,SE),
pr(LE), pr(SE) and pr(MCrt). Our approach was to elicit measures of location for these
quantities and chose the scale to give diffuse Dirichlet priors. A Jeffreys prior was used for
pr(MCr).

The model of Figure 7 embodies the assumption that LE, SE and MCt are mutually
independent. However, it was felt that singer errors were more likely to occur for large
intervals (tritone or larger) than smaller intervals. Concerning listener error, evidence pre-
sented in Unyk and Carlsen (1987) suggested that transcription errors were more likely to
occur when the melodic beginning has high expectancy generating strength (e.g. C — D
which generates an expectancy of either £ or C' in the vast majority of subjects) and this
expectancy is violated (e.g. C'— D followed by G¥). The adjusted Bayesian graphical model
reflecting these dependencies is given in Figure 8 and the required prior distributions, i.e.
pr(MCyp | MCp,LE,SE), pr(LE | MCt), pr(SE | MCy), and pr(MCr), were easily elicited.
For details, we refer the reader to Carlsen et al. (1992).

What we are interested in is of course the distribution of MCt and in particular, the
probability that all the counts in a given cell are spurious. A Gibbs sampling technique was
employed to estimate these probabilities using the data augmentation idea of Tanner and
Wong (1987)—see also Smith and Roberts (1993). A complication that arises here is that
a Gibbs sampler Markov chain defined on the model of Figure 8 will not be irreducible—it
is not possible to get from a state with neither listener error nor singer error to a state
with errors updating just one variable at a time. A simple solution to this problem is to
periodically update two variables, i.e. an error variable and an melodic continuation variable,
simultaneously.

The resulting empirical model is shown in Figure 9. Cells marked O had no observations
and are deemed to be ‘outside’ the template. Cells marked I, never had a zero count in 5,000
iterations of the Gibbs sampler and are deemed to be ‘inside’ the template. Cells marked
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Figure 8: Graphical Expectancy Model

F for ‘fuzzy’ did have non-zero counts in the dataset but the probability that they are all
spurious is Non-zero.

Comparing Figure 9 with Narmour’s I-R model (Figure 6), it is clear that there are
substantial areas of disagreement between the two models. For a detailed comparison of the
two models see Carlsen et al. (1992).

The method we have adopted here is a form of multinomial smoothing. A similar ap-
proach is suggested in Titterington (1985). Bayesian graphical models provide a practical
method for doing this and allow for incorporation of expert knowledge expressed in terms of
readily understood quantities. This is the chief advantage of the Bayesian graphical model-
based approach in this application and provides a method to carry out "knowledge-based”
smoothing as against the rather more arbitrary kernel-based methods.

5 Double Sampling

5.1 Introduction

Suppose you are presented with the following task: estimate the proportion of newborns
born with jaundice nationwide. The data to hand consists of records of 500 births where it
is recorded at birth by the midwife or gynecologist whether or not the child is jaundiced. This
classification however is only based on a visual inspection of the child and may be incorrect.
For a random subsample of 100 of the births highly accurate (but expensive) pathology tests
are also available. Fictituous data are presented in Table 7 where Dy indicates the child is
jaundiced according to the “fallible” visual inspection and Dy indicates jaundice according
to the true or “infallible” pathology test (assumed here to be without error).

There are two obvious ways to estimate the required proportion. Just using the infallible
pathology data gives an estimate of 0.68 with a standard deviation of 0.047. Alternatively,
using just the visual data gives an estimate of 0.56 with a standard deviation of 0.022. The
former estimate is unaffected by measurement error but has a rather large standard deviation.
The latter estimate may be biased but has a small standard error. Neither estimate utilises
information about the accuracy of the visual test contained in the cross-classification of Dy
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Figure 9: Fuzzy Empirical Expectancy Model Model. The “e”’s represent melodic con-
tinuations that are predicted to occur for each melodic beginning. The “0”’s represent
continuations for which the data is ambiguous. No predictions are made for the octave and

tritone melodic beginnings (-12, -6, 6, and 12).

Visual and Pathology

Dy Dy
Dr | 61 7
Dy | 1 31
100
Visual Only
DF EF
| 218 | 182 | 400

Table 7: Double Sampling: Jaundice Data
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and Dp. What you would like to do is estimate pr(Dy) using all the data to hand, and
ideally, estimate the accuracy of the visual test at the same time.

A straightforward maximum likelihood solution to this problem with attendant asymp-
totic standard error estimates was presented by Tenenbein (1970, 1972). Extensive generali-
sations of Tenenbein’s work have been reported by Chen (1979, 1989), Ekholm and Palmgren
(1987), Ekholm (1991), Espeland and Hui (1987), Espeland and Odoroff (1987), Lie et al.
(1991a) and Nedelman (1988)—this list is by no means exhaustive. A Bayesian approach
was presented by Geng and Asano (1989).

Here we present an approach to double sampling which is based on Bayesian graphical
models. This allows us to account for model uncertainty, incorporate prior expert knowledge
and tackle larger problems for which the conventional methods become unwieldy.

We begin by presenting in Figure 10 a trivial directed Bayesian graphical model for the
jaundice example. As this is the only sensible model for this application, there is no model
uncertainty. However, the graphical framework does facilitate the incorporation of prior
knowledge through the elicitation of informative prior distributions for pr(Dr), pr(Dg | Dr)
and pr(Dg | Dr). Posterior distributions for quantities of interest are then derived via the
Gibbs sampling method adopted in Section 4.

Figure 10: Double Sampling: Jaundice Data

For this fictituous example, Jeffreys prior distributions were used in place of informa-
tive prior distributions. The consequent “as if” posterior distribution for pr(Dr) is shown
if Figure 11. The posterior mean and standard deviation for pr(Dy) are 0.63 and 0.026
respectively. This data was also analysed by Tenenbein (1970) and his corresponding esti-
mates were 0.63 and 0.033. Point estimates for pr(Dp | Dy) and pr(Dp | D) are 0.034 and
0.131 for the Bayesian graphical model. Tenenbein’s corresponding estimates are 0.025 and
0.129. The Bayesian graphical model estimates are quite insensitive to the choice of prior
distribution.

Chen (1979), Chen et al. (1984) and Espeland and Odoroff (1985) introduce covariates,
triple sampling and extra doubly sampled variables respectively into the above framework.
The standard approach is to fit recursive systems of log linear models with maximum likeli-
hood estimation via the EM algorithm. Ekholm and Palmgren (1987) adopt a more straight-
forward approach forming a single model with interpretable parameters. However, in each
case, the analysis is characterized by tedious likelihood calculations and obscure derivations
of asymptotic properties. The Bayesian graphical model approach by contrast, extends in a
simple fashion to more complex models. Posterior distributions of many quantities of interest
are easily derived.
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Figure 11: Posterior Distribution for pr(Dr)

5.2 Example : Down’s Syndrome in Norway

We present the complete Bayesian graphical model approach to double sampling in the con-
text of an example which was introduced by Lie et al. (1991a) and is further analyzed by
York et al. (1992). Since 1970, epidemiological surveillance of congenital malformations has
been carried out in Norway on the basis of data in the nationwide Medical Birth Registry
(MBR). This data is collected at birth by the midwife or obstetrician and corresponds to the
visual inspection in our fictitious jaundice example above. Because of growing concerns about
incomplete ascertainment, a new notification system entitled “Melding om Fosterindiserte
Aborter og Medfgdte Misdannelser” (MIA) was introduced in 1985 in the county of Horda-
land covering about 15% of all births in Norway. The MIA registration is based on prenatal
diagnostics and pediatric follow-up including results from cytogenetic tests. However, unlike
the fictituous jaundice example, the MIA registration is subject to error. Data concerning
Down’s syndrome collected between 1985 and 1988 is presented in Table 8. For further
details, we refer the interested reader to Lie et al. (1991a,b).

Bayesian graphical models overcome two substantive difficulties with the analysis of this
data presented by Lie et al. (1991a). First, although both of their models provide a reason-
able fit to the data, Down’s syndrome prevalence estimates and corresponding asymptotic
standard errors are quite different under the two models. The Bayesian graphical model
framework accounts for this model uncertainty. Second, Lie et al. (1991a) did not consider
any covariates such as maternal age in their analysis. Because of the strong association with
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Doubly Sampled Data

Ry Ry
Ry | 8 9
R, | 13 17847
27877
Singly Sampled Data
Rl Fl
‘ 233 ‘ 188790 ‘ 189023

Table 8: Down’s syndrome data for 19851988 : R; represents case ascertainment through
the national MBR registry and Ry through the regional MIA registry.

maternal age, a complete study of the prevalence of Down’s syndrome should include this
covariate (Lie et al., 1991b). However, the complexity of the existing analysis, in particular
the calculation of asymptotic variances, suggests that such expansions would be difficult.
Again, the Bayesian graphical model framework greatly facilitates both the incorporation of
covariates.

The directed models we consider are subject to the constraint that links connecting error-
free but possibly unobserved variables and error-prone observed variables are in the natural
causal direction, i.e. from the error-free to the error-prone. A Markov chain Monte Carlo
method was adopted for the analysis of the data of Table 8 augmented by maternal age (in
six categories). Denoting by A, the prevalence of Down’s syndrome, and by Y, the observed
data, we want to compute pr(A | Y). To account for model uncertainty and integrate over
7, the missing data on the singly sampled cases, we re-express this as:

pr(A|Y) = Zpr(A | MY, Z)pr(M, Z | Y)

where the summation is over all models, M, and all possible states of the missing data,
Z. This can be numerically approximated by simulating a process { Z(t), M(t) } with
stationary distribution pr(Z, M | Y'). A schematic version of the simulation method adopted
is presented in Figure 12.

If necessary, simulating from pr(M | Z,Y’) can utilize a Metropolis step, as described in
Section 2.

The results of a Bayesian graphical model analysis of the Down’s syndrome data are
given in Table 9 and Figure 13. In this analysis, all models were assumed equally likely a
priori and informative prior distributions, based on historical data and expert knowledge
were placed on the various probabilities. For details we refer the reader to York et al. (1992).
The analysis assumes that there are no false positives, which is reasonable in this context.
Models with a ‘“*” on the Ry, R, link impose a special kind of dependence where it is assumed
that the MIA registry, Ry, will find all cases missed by the national registry, R;.

Except for the inclusion of the age covariate, the first two models in Table 9 correspond
respectively to the two models examined by Lie ef al. (1991a). Their first model produced a
maximum likelihood estimate for 10® x pr(.9) of 2.02 with a standard deviation of 0.35, while
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pr(M,Z |Y)
/ \ Gibbs
(Z Y, M) (M| Z,Y)
pr(Z,0 | Y, M)
/ \ Gibbs
pr(Z | 0,Y, M) (0] Z,Y, M)

Figure 12: Markov Chain Monte Carlo Model Composition with missing data. In order to
generate a process with the stationary distribution given at the top of the tree, we simulate
iteratively from the distributions at the leaves of the tree.
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Post. 10% x pr(S) pr(R; | S) pr(Ry | S)
Model Prob. | Mode | Mean | Std Dev | Mean | Std Dev | Mean | Std Dev

0.282 | 1.81 | 1.92 0.292 | 0.376 | 0.085 | 0.555 | 0.092

®

0.385 | 1.49 | 1.51 0.129 | 0.223 | 0.053 | 0.470 | 0.083

®

0.269 | 1.60 | 1.70 0.252 | 0.312 | 0.088 | 0.513 | 0.089

0.030 | 1.71 | 1.78 0.226 | 0.333 | 0.076 | 0.518 | 0.090

0.016 | 1.50 | 1.52 0.129 | 0.226 | 0.054 | 0.517 | 0.080

(=)
()
S

| Model Averaging | — [ 1.54 | 1.69 | 0.289 ]0.292 | 0.099 | 0.508 [ 0.095

Table 9: Features of the posterior for Down’s syndrome prevalence and the error probabilities of the two
registries. Prevalence is given as the rate per thousand. Only models with posterior probability larger than
0.01 are listed; all models are included in the model averaging results.

29



1500

— Full posterior

Model I; A->S
***** Model II; A->S
———  Model lll; A->S

——-  Model I; A->(S,R1)
- Model II; A->(S,R2)

1000

Posterior density

500
|

0.0 0.001 0.002 0.003 0.004

Overall Prevalence

Figure 13: Overall posterior for Down’s syndrome rate per 1000 when the mother’s age is included as a
covariate, along with the posterior for each individual model scaled according to its posterior probability.
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Figure 14: Mode and 5th and 95th percentiles of the posterior for Down’s syndrome prevalence by age of
mother, averaged across all models.
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their second model gives 1.49 and 0.13. Our analysis accounts for the this model uncertainty,
averaging over all the models. Furthermore, incorporation of the maternal age substantially
improves model fit and allows for age-specific reporting, such as in Figure 14.

5.3 Why Bayesian Graphical Models?

Bayesian graphical models extend the reach of multiply sampled data analysis into hereto-
fore intractable areas. Models of considerable complexity can be considered and posterior
distributions for a variety of quantities of interest derived. Expert knowledge can realistically
be incorporated and model uncertainty can be accounted for.

One note of caution: the Markov chain Monte Carlo method outlined here may run
into some practical difficulties in the analysis of very large datasets. The essential problem
is that the missing data conveys considerable information about the best models. Conse-
quently, their joint distribution, pr(M, 7 | Y') can be highly multimodal. We are currently
investigating possible solutions to this problem-see also Besag and Green (1993) and Lin

(1992).

6 Data Quality: Predicting Errors in Databases

6.1 Introduction

A recent article by Strayhorn (1990) introduced an important class of problems in data
quality management. The techniques developed potentially have wide application in quality
control or indeed in any environment where flawed items must be detected and counted.
Strayhorn was motivated specifically by the quality control of research data. He points out
that while large numbers of journal pages are devoted to the quantification and control of
measurement error, possible errors in data are rarely mentioned (see Feigl et al., 1982, for a
notable exception).

Strayhorn (1990) presented two methods for estimating error rates in research data: the
duplicate performance method and the known errors method. However, his analysis was
heavily criticized by West and Winkler (1991), hereafter referred to as WW, who present
Bayesian analyses of the two methods. Madigan et al. (1993b) introduce a third method, the
duplicate checking method, and show how Bayesian Graphical models provide for a simple
and extensible analysis of all three methods.

Here we briefly describe these Bayesian graphical models and the possibilities they
present.

6.2 Duplicate Performance Method

Suppose that a large number, N, of paper-based medical records must be entered into a
computer database, and further suppose that two data entry personnel, a and w are available
to carry out this task. The idea is that both independently key in the data and then the
resulting computer files are compared item by item by a method assumed to be error free.
Where there is disagreement, the original paper record is consulted and the disagreement
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settled. Let d be the total number of disagreements found in this way, d = z, + ., where z;
is the number of errors attributable to j, 7 = a,w. The only errors remaining are the subset
of the N — d records where both a and w were in error. The intuition is that if the ratio of

disagreements to total items is low, the individual error rates of @ and w are low, and

d
b b
the probability of joint errors i]sV lower still.

Because o and w carry out their tasks independently a trivial Bayesian graphical model for
this situation has two unconnected nodes A, and A,, where A; is a binary random variable
indicating whether j entered a particular record correctly or not, 7 = a,w. WW suggest that
in practice d/N will typically be small so that agreement between a and w will occur for most
records. For binary records, this sort of data will often be equally consistent with both typists
being almost always correct or both being almost always incorrect. Consequently, uniform
[0,1] priors on pr(A,) and pr(A,) will result in heavily bimodal posterior distributions.
To counteract this problem, WW put prior distributions on pr(A,) and pr(A,) which only
include values larger than 0.5 in their support. This takes them outside the class of conjugate
priors however. This bimodality problem can also be avoided by using informative priors
which are centered on a value greater than 0.5, thereby assuming a priori that the typists
are more likely to enter data correctly than not. This approach retains conjugacy which
proves very useful when performing the calculations. Furthermore prior distributions which
are truncated at 0.5, especially the uniform prior on [0.5,1], will typically provide a poor
model for prior expert knowledge.

|

ol To | N—20 — 20— 2

N

Table 10: Duplicate Performance Method Table

The framework for this method may be represented as a 2 x 2 table—see Table 10. Here
z represents the number of records where o and w are both correct. Then we have:

pr(z | 2o, 20, N) o pr(z,aq, 2z, | N)
_ / pr(D | N, 0)pr(6)do
o

where D represents complete data and # is the vector parameter for the cell probabilities.

In Table 11 we present results for some of the hypothetical datasets considered by Stray-
horn and WW assuming “informative” prior beta(1,3) distributions for pr(A,) and pr(Ay).
This assigns both quantities a prior mean of 0.75 and standard deviation of 0.19. For each
dataset we show the probabilities of various undetected error counts. Also provided is the
probability assigned to the event that all the events on which there is agreement are in error—
this is to demonstrate that the bimodality problem is adequately addressed through the use
of reasonable informative priors. The probability of zero undetected errors is included from
the WW analysis for comparison purposes.
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WW pr(z | xo, xy)

t, pr(z>0|x,2,) 2=0 2z=0 z=1 z=2 2z=3 z=4 z=5 z=6 z=max

20 2 0.46 0.27 054 0.26 0.10 0.04 0.02 0.01 0.01 0.00
20 1 1 0.17 0.59 0.83 0.14 0.03 0.01 0.00 0.00 0.00 0.00
20 1 0.09 0.71 091 0.08 0.01 0.00 0.00 0.00 0.00 0.00
5000 50 50 0.41 0.58 0.59 0.31 0.08 0.02 0.00 0.00 0.00 0.00
5000 25 25 0.13 0.86 0.87 0.12 0.01 0.00 0.00 0.00 0.00 0.00
5000 5 5 0.01 0.99 0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00
5000 23 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: Duplicate Performance Method: Hypothetical Data and Predictive Probabilities
for Undetected Errors, Independent Be(1,3) Priors for pr(A,) and pr(A,). n is the total
number of records, x, and x, are the number of errors attributable to each of the two
checkers and z is the number of undetected errors.

6.3 Duplicate Checking Method

A somewhat different approach was alluded to but not analyzed by WW, and we refer to this
as the duplicate checking method. Here we assume that the database already exists and the
task of our two friends a and w is to independently check each record in the database. WW
make an important assumption that error free records are classified correctly although our
analysis does not require this assumption. Thus the method may be represented as in Figure
15 where D; now indicates whether or not ¢ detected an error and X is a binary random
variable indicating whether or not the record in the database is correct. The key point is
that we have an extra piece of information here, namely the number of records for which
both « and w detect errors. This is similar to several of the previous examples and again
informative prior distributions can be readily elicited in terms of well-understood quantities.
We refer the reader to Madigan et al. (1993b) for numerical examples.

Figure 15: Duplicate Checking Method

6.4 Known Errors Method

The known errors method is described by Strayhorn (1990) as follows: “In this method,
a member of the research staff completes the data operation in question. The data are
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Figure 16: Known Errors Method

then presented to a second person, for example, the supervisor of the staff member, who
introduces a certain number of ‘known errors’ into the data set. The locations and forms of
these errors are recorded elsewhere. Then the data set together with known and unknown
errors, 1s given to another staff member, who checks the data set.”

WW provide two elegant analyses of this method. Our purpose here is to point out
that the known errors method is a special case of double sampling. Here we have a simple
Bayesian graphical model with two nodes, X7, representing the true state of the record, and
Xr, a “fallible” version representing what the checker has recorded. For the original data
we only have observations on Xp while for the known errors, both nodes are recorded. To
be consistent with the analysis of WW, uniform prior distributions were used. Note that the
known values of Xp are not used when updating the distribution of pr(Xr).

The results presented in Madigan et al. (1993b) are essentially identical to those of WW.

6.5 Why Bayesian graphical models?

We have outlined how directed Bayesian graphical models provide for a straightforward
analysis of three database error checking methodologies. In each case informative prior
distributions can easily be specified in terms of readily understood quantities and modeling
assumptions are transparent. The calculations in each case are straightforward, providing
outputs which are much easier to interpret than Strayhorn’s confidence intervals.

However, the real strength of the Bayesian graphical modeling approach for these prob-
lems is that it can be generalised in a simple fashion. In particular, the generalizations
suggested by WW and Madigan et al. (1993b), can easily be incorporated. These include
relaxation of the no-false-positive assumptions, varying error rate probabilities according to
some characteristic of the data records, adding additional checkers, mixing duplicate and
known errors methods, and sampling only a portion of the database.

7 Discussion

We have attempted to show that Bayesian graphical models represent a powerful unified
framework for a wide variety of discrete data problems. Modeling assumptions are entirely
transparent and computations are simple to program. Expert knowledge can easily be in-
corporated and model uncertainty accounted for.
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The methods we discuss can readily be extended in two particular directions. First,
graphical Gaussian models could be included. These were introduced as covariance selection
models by Dempster (1972) and are discussed in Whittaker (1990). The variables being
modeled in a graphical Gaussian model have a multivariate normal distribution. Conditional
independencies, which correspond to zeroes in the inverse variance, are represented by an
undirected graph. The Bayesian framework for these models has been developed by Dawid
and Lauritzen (1993). Recent extensions to this model class described by Cox and Wermuth
(1993) are of considerable interest in this context.

Second, the graphs we consider here are either undirected or fully directed. The methods
could be extended to include chain independence graphs, also called block recursive graphs
by Lauritzen and Wermuth (1989). These graphs may both directed and undirected links
and provide support for a richer class of models.

A very valuable development would be to include the mixed discrete/continuous models

of Wermuth and Lauritzen (1990) and Edwards (1990).

Appendix I: Graph Theoretic Terminology

The terminology we use is largely adapted from Lauritzen et al. (1990).

A graph is a pair G = (V, F) where V is a finite set of vertices and the set of edges, F,
is a subset of V' x V of ordered pairs of distinct vertices. Edges («, #) € E with both (o, 3)
and (4, ) in F are called undirected, whereas an edge («, ) with its opposite (3, «) not in
E is called directed.

If the graph has only undirected edges it is undirected and if all the edges are directed,
the graph is said to be directed. Our graphs are either directed or undirected.

If A CV is a subset of the vertex set, it induces a subgraph G4 = (A, F4), where the
edge set K4 = F N (A x A) is obtained from G by keeping edges with both endpoints in A.

A graph is complete if all vertices are joined by an edge. A subset is complete if it induces
a complete subgraph. A complete subset that is maximal with respect to inclusion is called
a clique.

In a directed graph, if (o, 3) € E, « is said to be a parent of 8 and 3 a child of a. The
set of parents of 3 is denoted by pa(/) and the set of children by ch(3).

In an undirected graph, if (a, ) € F, a and 3 are said to be adjacent or neighbours. The
boundary, bd(A), of a subset A of vertices is the set of vertices in V'\ A that are neighbours
to vertices in A. The closure of A is cl(A) = AUDd(A).

A path of length n from « to 8 is a sequence

a = ag,...,a, = 3 of distinct vertices such that (a;_1,0;) € F for all e = 1,...,n. If
there is a path from « to 3 we say that a leads to 3 and write a — 3. The descendants
de(a) of a are all the vertices 3 such that « leads to . The nondescendants are nd(a) =
V\(de(a) U {a}). The vertices a that lead to 3 are called the ancestors of 3, denoted by
an(#).

A subset A C V is an ancestral set if it contains all its own ancestors, i.e if an(a) C A
for all @ € A.

A chain of length n from « to  is a sequence o = «ap,...,a, = f of distinct vertices
such that (a;_1, ;) € E or (e, ;1) € Eforall i =1,...,n.
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A subset S is said to separate A from B if all chains from vertices « € A to 3 € B
intersect 5.

A cyele is a path with the modification that o = 3, i.e. it begins and ends at the same
point. A directed graph is acyclic is it contains no cycles. An undirected graph is chordal
if it contains no cycles of length > 4 without a chord (i.e two non-consecutive vertices that
are neighbours).

An ordering of the cliques of an undirected graph, say (C4,...,C,) is said to be perfect if
the nodes of each clique C; also contained in previous cliques (C1,...,C;_1) are all members
of one previous clique. These sets S; = C; N (U;;llcj) are called cliqgue separators. An
undirected graph admits a perfect ordering of its cliques if and only if it is chordal.

For a directed acyclic graph G<, we define its moral graph, G™ as the undirected graph
with the same vertex set but with « and / adjacent in G™ if and only if either (a, 3) € £
or (,a) € E or there exists a v such that (a,v) € E and (3,7) € E. In other words the
moral graph is obtained from the original graph by ‘marrying parents’ with a common child
and the then dropping the directions on the edges.
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