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SUMMARY

The asymptotic Pearson’s chi-squared test and Fisher’s exact test have long been the most used for testing
association in 2×2 tables. Unconditional tests preserve the significance level and generally are more
powerful than Fisher’s exact test for moderate to small samples, but previously were disadvantaged by
being computationally demanding. This disadvantage is now moot, as software to facilitate unconditional
tests has been available for years. Moreover, Fisher’s exact test with mid-p adjustment gives about the
same results as an unconditional test. Consequently, several better tests are available, and the choice of
a test should depend only on its merits for the application involved. Unconditional tests and the mid-p
approach ought to be used more than they now are. The traditional Fisher’s exact test should practically
never be used. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A 2×2 table is a way of summarizing the observed cross-classification of two dichotomous random
variables. An example shown in Table I comprises the results of a double blind trial of high dose
versus standard dose of epinephrine in children with cardiac arrest [1]. One of the 34 children in the
high dose group survived 24 h, while 7 of the 34 children in the standard dose group survived 24 h.
Another example is shown in Table II, which comprises a classification of CHRNA4 genotypes
and presence of exfoliation syndrome in the eyes [2].

Association in 2×2 tables traditionally has been tested using the asymptotic Pearson’s chi-
squared test for larger samples and Fisher–Irwins’s exact test, usually called Fisher’s exact test,
for smaller samples. But these two tests have lesser-known drawbacks. The asymptotic test may
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Table I. Treatment of children with cardiac arrest. High dose
versus standard dose epinephrine [1].

Survival at 24 h

Treatment Yes No Sum

High dose 1 33 34∗
Standard dose 7 27 34∗
Sum 8 60 68∗

An asterisk * denotes the sums fixed by design.

Table II. Genotype (CHRNA4-CC versus CHRNA4-CT or -TT) and
presence of exfoliative syndrome in the eyes (XFS) [2].

XFS

Yes No Sum

CHRNA4-CC 0 16 16
CHRNA4-TC/TT 15 57 72
Sum 15 73 88∗

An asterisk * denotes the sum fixed by design.

not preserve the test size, that is, the actual significance level may be higher than the nominal
significance level. Fisher’s exact test is conservative, that is, other tests generally have higher power
yet still preserve test size. In the examples of Tables I and II, neither of these traditional methods
performs well.

Many significance tests are possible, depending on a variety of choices, including

• Level of conditioning in the sample space (possible tables): Should the p-value be computed
unconditionally or conditionally on one or more of the marginal sums in the observed table?

• Choice of test statistic, such as Pearson’s or Fisher’s.
• Exact or asymptotic calculation of the p-value.
• Further adjustments, such as the mid-p-value.

The number of conceivable tests is large. For example, Martı́n Andrés and Silva Mato [3] studied
60 asymptotic tests for comparing binomial proportions. Exact analysis of discrete data, including
2×2 tables, is described in a more general framework in a recent book by Hirji [4].

In the present article, we describe the main principles underpinning various tests in 2×2 tables
and recommend when each of them might best be used. Estimation and confidence intervals for
effect size are outside the scope of the article. The common experimental designs underlying 2×2
tables are defined in Section 2. The most common test statistics are defined in Section 3. Various
ways of defining and computing the p-value are described in Section 4. Section 5 summarizes
what is known about the tests. Some readers may wish to skip Sections 3–5 and go straight to
Section 6, where we summarize the definitions and properties of the most common tests, and the
recommended tests. Examples illustrating the tests are given in Section 7. Power and sample size
calculations are briefly covered in Section 8. Our recommendations for choice of tests are given
in Section 9.
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2. EXPERIMENTAL DESIGNS AND HYPOTHESES

The counts of a 2×2 table may be summarized as illustrated in Table III. Such a table may result
from different designs or sampling models, as described below.

2.1. Both margins fixed design

The classic example is ‘a lady tasting a cup of tea’ [5]. Fisher’s colleague Muriel Bristol claims
she can taste whether milk or tea was added first to her cup. Four tea first and four milk first cups
are presented to her in randomized order. She is told that there are four of each kind and is asked
to identify which is which. A possible result is given in Table IV. In this design, the row sums
as well as the column sums are fixed beforehand. Such a design is hardly ever used in practice
[6]. But understanding this design is important in understanding the nature of Fisher’s exact test
discussed in Section 3 below.

2.2. One margin fixed design

In clinical trials, one set of marginal sums usually is fixed beforehand, typically the number of
patients in each treatment group, such as in the epinephrine example of Table I. This is also the
basic design in case-control studies in epidemiology. The one margin fixed design is usually used
for comparing two binomial proportions. We assume, without loss of generality, that the fixed
margin comprises the row sums.

2.3. Total number fixed design

In cross-sectional studies of association, usually only the total sum N is fixed beforehand. This is
the case for the exfoliation example in Table II, where only the total number of patients, N =88,
was fixed before genotype determination and eye examination.

Table III. The general counts of a 2×2 table.

j

1 2 Sum

i 1 n11 n12 n1+
2 n21 n22 n2+

Sum n+1 n+2 N

Table IV. Fisher’s tea-drinker.

Guess poured first

Poured first Milk Tea Sum

Milk 3 1 4∗
Tea 1 3 4∗
Sum 4∗ 4∗ 8∗

An asterisk * denotes the sums fixed by design. .

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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We consider the null hypothesis of no association between the variables defining rows and
columns, for example, that the probability of success is independent of treatment. The present
article focuses on the one margin fixed design and the total sum fixed design. The null hypothesis
is formalized in Table V. If a row sum or column sum is zero, the table is uninformative about
association. We assume that the row sums and column sums are nonzero. Most of the tests discussed
are two-tailed, testing whether association is random or not.

3. COMMON TEST STATISTICS

A test statistic is a function of the observations, providing a measure of the observed table’s
compliance with the null hypothesis. Unless otherwise stated, we define a test statistic T in such
a way that it is non-negative and tables with large values agree less with the null hypothesis than
do tables with lower values.

Let n denote the observed table (Table III) with marginal sums n+ =(n1+,n2+,n+1,n+2). Under
H0, the estimated expected counts are

mi j =ni+n+ j/N (1)

The most used test statistics are those defined for Pearson’s chi-squared test, the likelihood ratio
(LR) test, and Fisher’s exact test. Pearson’s chi-squared test statistic is

TPe(n)=∑
i, j

(ni j −mi j )
2

mi j
= N (n11n22−n12n21)2

n1+n2+n+1n+2
(2)

and the LR test statistic is

TLR(n)=−2 log
L0

L1
=2

∑
i, j

ni j log

(
ni j
mi j

)
where a term is 0 if ni j =0 (3)

The maximum likelihood of the table under H0 and H1 are L0 and L1. Fisher’s statistic is defined
as the conditional probability

P(n|n+)=
(
n+1

n11

)(
n+2

n1+−n11

)/(
N

n1+

)
(4)

with small values providing evidence against H0. All the sampling models described previously
give the same results (1) to (4).

For testing equality between two proportions (one margin fixed design), another possible test
statistic is the normalized difference between the observed proportions

z=
n11
n1+

− n21
n2+√

n+1

N
· n+2

N

(
1

n1+
+ 1

n2+

) (5)
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However, TPe= z2, so this statistic is equivalent to Pearson’s chi-squared statistic. It is sometimes
denoted as zpooled, as it is based on the two proportions being equal under H0. If this is not the
case, the corresponding normalized difference is

zunpooled=
n11
n1+

− n21
n2+√

n11n12
n31+

+ n21n22
n32+

(6)

The zunpooled statistic is not recommended for testing the null hypothesis of no association [7]. Like-
wise, the Santner and Snell statistic [8], which is the unnormalized difference in proportions given
by the numerator in (5), is not recommended for testing the null hypothesis of no association [7].

There are continuity corrections for some test statistics, aiming to improve the asymptotics in
certain designs. Best known is Yates’ correction for Pearson’s statistic, described in Section 4
below.

4. DEFINING AND COMPUTING THE p-VALUE

In general, the p-value is defined as the probability of the test statistic T being equal to or more
extreme than its value for the observed table (tobs)

p-value= P(T�tobs|H0) (7)

In general, H0 is rejected if the p-value does not exceed �, the nominal significance level. If both
marginal sums are fixed, the p-value (7) can be computed using the probabilities (4). Else, the
calculated p-value depends on the design, as well as the value(s) of the unknown parameter(s), or
nuisance parameter(s), under H0. In the one margin fixed design, there is one nuisance parameter,
�=�1=�2, the common success probability in row 1 and 2. In the total sum fixed design, the row
and column probabilities are unknown, so there are two nuisance parameters, �1+ and �+1. A test
is said to preserve test size if the actual significance level does not exceed the nominal significance
level, for any value of the nuisance parameter(s). If the actual significance level is lower than �,
the test is called conservative. If H0 is rejected only if the p-value is less than �, the test may be
unnecessarily conservative, since we have discrete data.

4.1. Exact conditional tests

The hindrance of unknown nuisance parameter(s) is overcome when the conditional p-value, given
the marginal sums n+ =(n1+,n2+,n+1,n+2), is computed as

Conditional p-value= P(T�tobs|n+,H0) (8)

Then, H0 is rejected if the conditional p-value does not exceed �. This is done in Fisher’s exact
test, which was first proposed by Irwin [9]. The widespread use of conditional tests for 2×2 tables
may be ascribed to their independence of the nuisance parameter(s) and to their computational
ease. In the present article, by ‘conditional test’ we mean conditional on row and column sums,
unless otherwise stated.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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Any conditional test preserves test size, because

P(Reject H0|H0) =∑
n+

P(Reject H0|n+,H0)P(n+|H0)

=∑
n+

P[tobs is such that P(T�tobs|n+,H0)��]P(n+|H0)

�
∑
n+

�P(n+|H0)

= �
∑
n+

P(n+|H0)=�·1=� (9)

A conditional test can be unnecessarily conservative, with actual significance level notably less
than �. There are several approaches for reducing this conservatism, using

• An asymptotic method, like the asymptotic Pearson’s chi-squared test. However, this may
violate test size seriously for small samples.

• A mid-p-value with an exact conditional test. The test size may be violated, but typically not
much [10]. This approach is called quasi-exact by Hirji et al. [11].

• An unconditional test that preserves test size and has high power. We regard this to be the
best approach in small samples.

4.2. Asymptotic tests

The most used asymptotic tests are probably those using Pearson’s chi-squared statistic (2) and
the LR statistic (3), approximating the p-value as

asymp p-value= P(�21�tobs) (10)

where �21 is chi-squared distributed with one degree of freedom. These asymptotic tests can be
used for all designs described above.

Yates’ continuity correction for Pearson’s statistic is given by

TPe,CC(n)=∑
i, j

(|ni j −mi j |−1/2)2

mi j
=

N

(
|n11n22−n12n21|− N

2

)2

n1+n2+n+1n+2
(11)

where mi j is given by (1).

4.3. The mid-p-value

The mid-p-value is defined as

mid-p-value= P(T>tobs)+ 1
2 P(T = tobs) (12)

and the null hypothesis is rejected if mid-p-value ��. The mid-p procedure was proposed by
Lancaster [12] and recently has gained wider acceptance, see [4, 13, 14] and references therein.
Barnard [15] recommends reporting both the p-value and the mid-p-value, arguing that the p-
value measures the significance when the data are judged alone and the mid-p-value is suited for
combining evidence from several studies. In fact, for a one-sided test with any discrete test statistic,

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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we have E(P-value|H0)>
1
2 and E(mid-p-value|H0)= 1

2 , see, for example, [4, 14]. A theoretical
justification for mid-p-values in 2×2 contingency tables is provided by Hwang and Yang [16].
A mid-p test does not guarantee preservation of test size. However, a conditional mid-p test, as
described above, approximately preserves test size unconditionally [4].

4.4. Unconditional tests

The exact tests considered this far are conditional on n+ =(n1+,n2+,n+1,n+2). Unconditional
tests, on the other hand, assume no marginal sums fixed, save those fixed by design. A compli-
cation concerning the unconditional p-value is that P(T�tobs) depends on the unknown nuisance
parameter(s) under H0. To ensure that the test size does not exceed �, the p-value is taken [17, 18] as

max
0���1

P(T�tobs;�|H0) (13)

Equation (13) applies to a one margin fixed design, where the nuisance parameter is the success
probability �=�1=�2 under H0. In a multinomial design (total number fixed design), maximization
is performed over the two-dimensional area [0,1]×[0,1] for (�+1, �1+). The unconditional tests
described here are for the one margin fixed design, unless otherwise specified.

The unconditional test described by Suissa and Shuster [19] is of this type, using Pearson’s
statistic. Barnard’s unconditional test [20] uses a more computationally intensive algorithm for
building a rejection region, and is, to our knowledge not included in any available software.
StatXact provides the Suissa and Shuster test (somewhat misleadingly named Barnard’s test in
StatXact).

Boschloo [21] and McDonald et al. [22] suggested a raised conditional level of significance to
reduce the conservatism in an exact conditional test. That is, reject H0 if the conditional p-value��,

where � is the highest number such that P(Reject H0) �� for all parameter values under H0.
This is a valid procedure, see, for example, [18]. An equivalent procedure is to use Fisher’s exact
conditional p-value as a test statistic in an unconditional test, with small values providing evidence
against H0. We call this the Fisher–Boschloo statistic. The resulting unconditional p-value for
Boschloo’s test is interpreted in the usual manner and is compared with the significance level �.
This p-value can be computed using the Berger software [23]. Some authors modify Boschloo’s
test by using the one-sided Fisher’s exact conditional p-value as test statistic in the two-sided test.
This is done in the software by Martı́n Andrés [24].

It has been pointed out that the p-value defined by (13) is maximized over all values of �,
including values highly unlikely in light of the observations (see, for example Agresti ([25], pp.
95–96)). This drawback is reduced in the Berger and Boos procedure [26], where the unconditional
p-value is taken as

max
�∈C�

P(T�tobs;�)+� (14)

where C� is a 100(1−�) per cent confidence interval for �. Here, � is taken to be very small, such
as 0.001. This procedure also preserves the test size. It is fully implemented in [23, 27].

For an unconditional test in the one margin fixed design (two binomials), the Berger software
[23] allows N�1000, with optional Berger and Boos correction. Other relevant softwares are
[24, 27, 28]. In the total sum fixed design, the softwares [23, 24], allow sample sizes N�400 and
N�40, respectively.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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An approximate unconditional test may be formed by inserting the maximum likelihood estimate
of � in (13) instead of maximizing over �. It seems similar to the conditional mid-p test, in terms
of occasionally exceeding the nominal significance level [29].

4.5. One-sided and two-sided tests

The test statistics and p-values defined above are generally for two-sided tests. For a one-sided
test, only outcomes in the direction of the one-sided hypothesis are included in computation of
the p-value.

For two-sided exact tests, the two-sided p-value may alternatively be defined as twice the
smallest tail (TST), that is, twice the smallest of the one-sided p-values, instead of a probability-
based p-value (8). In exact tests, this can make the test slightly more conservative. On the other
hand, with the TST one always is on the safe side: When rejecting a two-sided hypothesis at
level �, the TST method implies that the corresponding one-sided hypothesis will be rejected at
level �/2. These issues are further discussed in Hirji ([4], pp. 206–210), Agresti ([25], p. 93), and
Altman ([30], p. 256).

Note that many software programs compute the one-sided p-value only for the smallest tail.

5. WHAT IS KNOWN ABOUT THE TESTS

5.1. Choice of test statistic

For conditional p-values in 2×2 tables, common test statistics like Pearson’s chi-squared, LR,
and Fisher’s statistic are equivalent in two cases [31]:

• If the row sums (or column sums) are equal.
• For one-sided tests, regardless of the marginal sums. Hence, the same applies to two-sided

twice the smaller tail tests.

Else, the three test statistics may produce differing results. Power comparisons using conditional
p-values for two binomials indicate some differences, though there is no general ‘loser’ or ‘winner’
among them [10, 32]. The statistics of Fisher, and particularly Pearson, tend to be slightly more
powerful than LR. However, the Fisher statistic seems more robust to design and rarely performs
poorly. The same conclusions may be made for rxc tables with one fixed margin [33].

These results for conditional p-values do not extend to unconditional p-values computed by
(13). For example, the results in Table I give unconditional p-value=0.0281 with Pearson’s and
Fisher’s statistics, and unconditional p-value=0.0402 with the LR statistic. For unconditional tests
for the one margin fixed design, Mehrotra et al. [7] compared the test statistics Pearson (zpooled),
zunpooled, Santner and Snell and Fisher–Boschloo. Pearson and Fisher–Boschloo are recommended,
as they have the highest power. Andres et al. [34] compared 15 test statistics, including the original
test by Barnard. Barnard’s test and a simplified version of Barnard’s test have highest power, but
are considered too computer intensive for practical use. Among the others, Pearson’s chi-squared
and Fisher–Boschloo have power nearly as high as the optimal Barnard’s test [34].

For unconditional tests in the total sum fixed design, we are not aware of comparisons of test
statistics. Hence, we have no reason to recommend other test statistics than in the one margin fixed
design.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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5.2. p-value or mid-p-value

The conditional p-value test is conservative. The conditional mid-p test is less conservative, but
does not always preserve test size. However, in some cases, the conditional mid-p test preserves
the nominal level for all values of the nuisance parameter, else it tends to slightly violate test
size occasionally [10]. Hirji et al. [11] carried out a comprehensive comparison of Fisher’s exact
test, Fisher exact mid-p, the asymptotic Pearson’s chi-squared and two other asymptotic tests. For
both one- and two-sided tests, and for a wide range of sample sizes, they found that the actual
significance levels of the mid-p tests tend to be closer to the nominal level as compared with the
other tests. Empirical studies show that the performance of a conditional mid-p test resembles that
of an unconditional test ([4], p. 219).

5.3. Asymptotic tests

The original rationale for using asymptotic expressions was their ease of computation. According
to Cochran’s criterion [35], Pearson’s asymptotic chi-squared test is inaccurate in a 2×2 table if
any of the expected counts are less than five (mi j<5). Today, computations for other approaches
are readily performed. A conditional mid-p test can easily be calculated and performs somewhat
better than asymptotic tests also with counts slightly above Cochran’s criterion [11]. Anyway, it
should be noted that Yates’ correction (11) for Pearson’s chi-squared test assumes that all the
marginal sums n+ =(n1+,n2+,n+1,n+2) are fixed, which makes it a valid approximation to an
exact conditional test. This correction reduces the numerical value of the test statistic, and hence
reduces the power and significance level of the test, making it overly conservative [6]. We agree
with authors who state that Yates’ correction should no longer be used [4, 6, 25].

5.4. Conditional or unconditional tests

Unconditional tests are generally more powerful than conditional tests, and have been recommended
recently by many authors, see [7] and references therein. One outstanding comparison is that
Fisher–Boschloo’s test is uniformly more powerful than Fisher’s exact test, because its rejection
region always includes that of Fisher’s exact test [21]. This is true for one-sided tests, and hence
also for TST two-sided tests.

Mehrotra et al. [7] studied the Berger and Boos procedure (14) with �=0.001 for unconditional
tests with Pearson’s and Fisher–Boschloo’s statistics and found that the procedure gives a slight
improvement in test power. Kang and Ahn [36] pointed out that the Berger and Boos procedure is
particularly useful in extremely unbalanced designs, comparing two binomial proportions where
one sample size is, say, 20 times the other sample size. This seems sensible: The situation is almost
like a one sample test for a binomial probability, where you test if the probability in the small
group equals the empirical probability in the large group. To our knowledge, no research has been
conducted to find optimal values of �. Most authors use 0.001 or 0.0001. An exception is StatXact
8 using the default value 0.000001.

As an illustration, Figure 1 shows the actual significance level obtained in comparing two groups
with fixed row sums n1+ =n2+ =34, as in the epinephrine study. Fisher’s exact test is far more
conservative than Fisher–Boschloo’s unconditional test, which also by definition preserves test
size. Fisher’s conditional mid-p test performs about as well as Fisher–Boschloo’s unconditional
test. The mid-p test does not always preserve test size, although, in this case, it does. The Pearson’s
asymptotic test is not conservative, but neither does it preserve test size.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
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Figure 1. Actual significance level, two binomials (one margin fixed design), row sums 34, �=0.05.
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Figure 2. Power, two binomials (one margin fixed design), equal row sums, �1=0.03, �2=0.2, �=0.05.

Figure 2 shows an example of test power as a function of sample size for two equal groups with
success probabilities �1=0.03 and �2=0.2, similar to the observed proportions in the epinephrine
study, for a nominal significance level of �=0.05. The conditional test has lowest power. The
mid-p test and the unconditional test have about the same power.

The conservatism of conditional tests is more pronounced in balanced designs than in unbalanced
designs. This causes the paradox that a conditional test for a balanced design often gains power
when the sample size is reduced by one in one group [37]. A conditional mid-p test, as well as
an unconditional test, usually looses power with such a sample size reduction.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
DOI: 10.1002/sim



1170 S. LYDERSEN, M. W. FAGERLAND AND P. LAAKE

Unconditional tests have been disputed, as by [38], see also page 191 of [39]. Such dispute is
chiefly philosophical. Clearly, unconditional tests are legitimate when the relevant marginals are
not fixed by design [17, 18]. Unconditional tests have higher power than conditional tests. This
may lead to markedly lower sample sizes, even in moderately large samples. For example, to test
for a difference in binomial proportions when �1=0.03, �2=0.2, and �=0.05, the sample size
needed for 80 per cent power is 60 per group with Fisher’s exact test and 52 per group with
Fisher–Boschloo’s unconditional tests, even though Martı́n Andrés et al. [40] report the conditional
test to be acceptable in this case based on an average power consideration. In general, there should
be no reason to condition on quantities not fixed by the design.

6. SUMMARY OF MUCH USED TESTS AND RECOMMENDED TESTS

6.1. Pearson’s chi-squared test

This test uses the test statistic (2), with high values providing evidence against the null hypothesis.
It is an asymptotic test that approximates the p-value by the upper tail probability from the chi-
squared distributed with one degree and freedom. Yates’ correction (11) for Pearson’s chi-squared
statistic was originally introduced to make it mimic Fisher’s exact test. Pearson’s chi-squared test
with Yates’ correction should no longer be used.

6.2. Fisher’s exact test

An exact p-value is the exact probability of observing a table at least as extreme as the observed
one, under the null hypothesis. However, in 2×2 tables this probability typically depends on
one or more unknown parameters, such as the common success probability in comparing two
binomials in the one margin fixed design. This obstacle vanishes if we condition on the marginals
(observed row and column sums)n+ =(n1+,n2+,n+1,n+2), as if these were fixed by design like in
Fisher’s tea drinker example. The conditional probability (4) of a table given the marginals does not
depend on any unknown parameters. The p-value from the resulting Fisher’s exact conditional test
equals the probability of the observed table plus the sum of the probabilities (4) equal to or smaller
than the probability of the observed table. The resulting test preserves test size, but is, however,
unnecessarily conservative with lower power than conditional mid-p tests and unconditional tests.
We do not recommend the use of Fisher’s exact test.

6.3. Fisher’s exact mid-p test

In the mid-p version of Fisher’s exact conditional test, only half the probability of the observed
outcome is included in the mid-p-value. The resulting test is less conservative than Fisher’s
exact test, but the test size is not necessarily preserved. Its performance approximates that of an
unconditional test.

6.4. Exact unconditional tests

In an exact unconditional test, the exact p-value is first computed as a function of the unknown
parameter(s). Then, the p-value is taken as the maximum over all possible values, typically from 0
to 1. Recommended test statistics are Pearson’s chi-squared statistic (the Suissa and Shuster test)
or the conditional p-value from Fisher’s exact test (Fisher–Boschloo’s test). An unconditional test
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preserves test size and is usually more powerful than Fisher’s exact test. In fact, the one-sided
Fisher–Boschloo test is uniformly more powerful than the one-sided Fisher’s exact test. If the
Berger and Boos correction is used, the p-value is maximized over a confidence interval of values
rather than the whole interval 0 to 1, and this generally improves the test further. We consider
exact unconditional tests to be the gold standard for testing association in 2×2 tables.

7. EXAMPLES

The various methods may be illustrated by the following examples of computing the p-values for
the data in Tables I and II. In these examples, unconditional tests are our prime recommendations.
In addition, we compute the p-values for Fisher’s exact test, traditionally used in tables with small
counts. This is done partly to show how they differ from p-values for unconditional tests, partly
to illustrate how Fisher–Bochloo’s unconditional p-value is computed.

7.1. The epinephrine study (Table I)

In Fisher’s exact test with the given marginal sums, the possible counts n11 are 0,1, . . . ,8. The
conditional sample space, which is a one-dimensional subspace of the two-dimensional uncon-
ditional sample space, consists of nine outcomes, as illustrated in Figure 3. The corresponding
nine conditional probabilities are 0.0025, 0.0247, 0.1021, 0.2253,0.2910, 0.2253, 0.1021, 0.00247,
0.0025. In fact, since the sample sizes are equal, there are only five possible different values of the
test statistic, and hence only five possible conditional probabilities and five possible p-values. The
exact conditional p-value is the probability of the test statistic being equal to (white in Figure 3)
or more extreme than (grey in Figure 3) its value for the observed table (white with asterisk in
Figure 3)

p-value=0.0025+0.0247+0.0247+0.0025=0.0544

34

n21

8
*

0
0 8 34

n11

Figure 3. The conditional p-value for the epinephrine example (Table I) computed over the conditional
sample space of the nine possible outcomes given the marginal sums. The observed outcome is marked ∗.
Possible outcomes with less extreme, equal, and more extreme test statistic than the observed are marked

black, white, and grey, respectively.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1159–1175
DOI: 10.1002/sim



1172 S. LYDERSEN, M. W. FAGERLAND AND P. LAAKE

34

n21

7 *

0

0 1 34

n11

Figure 4. The unconditional p-value for the epinephrine example (Table I) in the one margin fixed design,
computed over all 35×35=1225 possible outcomes in the unconditional sample space. The observed
outcome is marked ∗. Possible outcomes with less extreme, equal, and more extreme test statistic than

the observed are marked black, white, and grey, respectively.
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Figure 5. P(T�tobs;�) for the epinephrine example.

Fisher’s exact conditional mid-p-value is

mid-p-value=0.0544− 1
2 (0.0247+0.0247)=0.0297

In principle, the unconditional p-value is found by computing the test statistic for all the (n1++
1)(n2++1)=35×35=1225 possible outcomes. The p-value for Fisher–Boschloo’s unconditional
test is the probability of the test statistic being equal to (white in Figure 4) or more extreme than
(grey in Figure 4) than its value for the observed table (white with asterisk in Figure 4). This
p-value depends on the value of the common success probability � under H0, as illustrated in
Figure 5. The unconditional p-value is taken as the maximum of this function, which is

unconditional p-value= max
0���1

P(T�tobs;�|H0)= P(T�tobs;0.128|H0)

= P(T�tobs;0.872|H0)=0.0281
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For the Berger and Boos correction, we first compute a confidence interval for the common success
probability under H0. Since we are performing exact tests, we should use an exact confidence
interval. The Clopper–Pearson interval guarantees that the coverage probability is at least 1−�. It
is given by (�l , �h) where

�l =
[
1+ N−n+1+1

n+1F
−1
2n+1,2(N−n+1+1)(1−�/2)

]−1

�h =
[
1+ N−n+1

(n+1+1)F−1
2(n+1+1),2(N−n+1)

(�/2)

]−1
(15)

and F−1
a,b (c) is the quantile of the Fisher distribution with a and b degrees of freedom, given

by the inverse distribution function of c. With n+1=8 successes out of N =68 trials, a 1−10−3

confidence interval becomes (0.0271, 0.2939), and the corresponding p-value is

p-value= max
0.0271���0.2939

P(T�tobs;�|H0)+10−3= P(T�tobs;0.128|H0)+10−3

= 0.0281+10−3=0.0291

7.2. The genotype—exfoliation example (Table II)

Only the total sum N is fixed beforehand. p-values conditional on row and column sums are
computed as before, and, using Fisher’s test statistic, are obtained as p-value=0.0629 and
mid-p-value=0.0447. The p-value for an unconditional test using the Fisher–Boschloo statistic
is computed to be 0.0514 or 0.0486 without or with Berger–Boos correction (�=10−3) by the
Berger software [23].

In the above examples, we see that the p-values from the recommended unconditional tests
can be substantially lower than those from the traditional Fisher’s exact test. Also, the conditional
mid-p-value is approximately equal to the unconditional p-value, as expected.

8. POWER AND SAMPLE SIZE CALCULATIONS

Tests may be conditional or unconditional. However, power calculations must, by their nature,
always be performed unconditionally on the marginal sums not fixed by design. Exact power or
sample size calculations for the recommended tests cannot always be performed with existing
software. StatXact provides power calculations for conditional as well as unconditional tests. The
software [28] performs power calculations for all recommended tests of the one margin fixed
design, save for unconditional tests with the Berger and Boos correction. Power calculations for
unconditional tests with the Berger and Boos correction can be performed, slightly conservatively,
as power calculations for unconditional tests without the correction. Computing time may be
excessive for moderate to large sample sizes with unconditional tests. Most commercial softwares
that provide sample size calculations provide asymptotic calculations for asymptotic tests. In cases
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for which exact calculations cannot be made, computing power or sample size asymptotically is
preferable to no computation at all.

9. RECOMMENDATIONS

Exact tests have the important property of always preserving test size. Our general recommendation
is not to condition on any marginals not fixed by design. In practice, this means that an exact
unconditional test is ideal. Pearson’s chi-squared (zpooled) statistic or Fisher–Boschloo’s statistic
works well with an exact unconditional test. Further, such a test can be approximated by an
exact conditional mid-p test or, in large samples, see, for example, the traditional asymptotic
Pearson’s chi-squared test. However, when an exact test is chosen, an unconditional test is clearly
recommended. The traditional Fisher’s exact test should practically never be used.
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