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HIGHER-ORDER LATENT TRAIT MODELS FOR COGNITIVE DIAGNOSIS 
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Higher-order latent traits are proposed for specifying the joint  distribution of binary attributes in 
models for cognitive diagnosis. This approach results in a parsimonious model for the joint  distribution of 
a high-dimensional  attribute vector that is natural in many situations when specific cognitive information 
is sought but a less informative i tem response model would be a reasonable alternative. This approach 
stems from viewing the attributes as the specific knowledge required for examination performance, and 
modeling these attributes as arising from a broadly-defined latent trait resembling the 0 of i tem response 
models. In this way a relatively simple model for the joint  distribution of the attributes results, which is 
based on a plausible model for the relationship between general aptitude and specific knowledge. Maxkov 
chain Monte Carlo algorithms for parameter estimation axe given for selected response distributions, and 
simulation results axe presented to examine the performance of the algorithm as well as the sensitivity 
of classification to model misspecification. An analysis of fraction subtraction data is provided as an 
example. 
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1. Introduction 

The introduction of multidimensional latent variable models for cognitive diagnosis has 
given hope that tests might reveal information with more diagnostic value than can possibly be 
revealed by the unidimensional latent trait of standard item response models. In these models 
mastery of particular skills or states of knowledge can be represented by a vector of binary 
latent variables, indicating mastery of each of a finite set of skills under diagnosis. A generic 
term for a psychological construct which might be a skill or knowledge state is attribute, but we 
may use more descriptive terms in the context of particular examples. The primary objective of 
cognitive diagnosis is to classify examinees into latent classes determined by vectors of binary 
skill indicators, and in the language of more general latent class modeling, models for doing this 
are called multiple classification latent class models (Maris, 1999). 

The utility of cognitive diagnosis in settings where unidimensional item response modeling 
has been traditionally used is seen in Tatsuoka (1995), in which a test of fraction addition as well 
as an SAT mathematics examination are considered for cognitive diagnosis. Another example 
is given in Mislevy (1996), where probability models are developed for diagnosing mastery of 
seven rules required for mixed-number subtraction. In cases like these, much of the dependence 
in the items can be explained by a single continuous and broadly-defined latent trait. However, 
attributes that are related to this trait but have more specific interpretations can be used to achieve 
an even more precise fit and afford practitioners with the opportunity to diagnose subjects in a 
way that leads to tailored remediation. 
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The methods proposed here aim to address a difficult issue in fitting models for cognitive 
diagnosis with many attributes, when item response models appear to be a reasonable but less 
informative alternative. This is accomplished by viewing the attributes as the specific knowledge 
required for examination performance, and modeling these attributes as arising from a broadly- 
defined latent trait resembling the O of item response models. In this way we can specify a 
relatively simple model for the joint  distribution of the attributes that is based on a plausible 
model for the relationship between general aptitude and specific knowledge. A potentially useful 
by-product  of this is that attribute classification and estimation of general aptitude can be offered 
by the same analysis, in a single consistent model. 

The primary aims of what follows are to propose a method for modeling the joint  distribu- 
tion of a latent attribute vector based on higher-order latent traits, and present a Markov chain 
Monte Carlo algorithm for parameter estimation. The model is motivated by the need for a rel- 
atively simple formulation of the joint  distribution in settings where the notion of higher-order 
latent traits representing constructs of general aptitude defined more broadly than the specific 
attributes in the cognitive diagnosis model  appear natural. 

A secondary aim of this paper is to examine the sensitivity of correct classification rates to 
the correct specification of the model. Theories for responses in cognitive diagnosis often stem 
from imagining a sequence of latent responses to subtasks that must all be correct in order to 
correctly answer the item (Embretson, 1984, 1997; Maris, 1999). However, it is conceivable that 
competing models using the same list of attributes but derived from different cognitive theories 
may perform equally well, provided the distance between the models is not too great. This will 
be examined in simulation. 

In the next section latent class models for cognitive diagnosis are discussed, and a method 
for parametrizing the joint  distribution of K binary latent class indicators is proposed. The third 
section describes Markov chain Monte Carlo procedures for parameter estimation, which are 
applied in a simulation study in the fourth section where model fit using both correct and incorrect 
models is examined, with an aim of considering the robustness of subject classification when the 
model is not consistent with the cognitive theory for response generation. Section five provides 
an analysis of fraction subtraction data, and compares several models using various criteria and 
measures of model fit. Concluding remarks are given in the final section. 

2. Model  Specification 

Let Y denote a vector of dichotomous item responses for J items. The components of Y are 
modeled as statistically independent given the attribute vector o~ = (oq, o~2, . . . ,  o~x) I. The kth 
element, O~k, of o~ is a binary indicator of a subject 's classification with regard to the kth attribute. 
For instance, in education O~k might indicate whether a subject has mastered a particular cognitive 
task or state of knowledge, such as converting a whole number to a fraction. In psychiatry it might 
be used to indicate a positive diagnosis for the kth of K psychiatric disorders under evaluation. To 
completely specify a latent variable model  for Y we need to formulate the conditional distribution 
of Y given an attribute pattern ~,  as well as parametrize the joint  distribution of ~.  First, we 
review selected models for the conditional distribution of Y. Using the terminology of Junker and 
Sijstma (2001), we review the DINA and NIDA models as examples of conjunctive models, and 
a model with linear logistic item response functions is included as an example of a compensatory 
model. 

2.1. Conditional Distribution of the Item Response Vector 

In the context of cognitive diagnosis, many models have been proposed for relating the 
distribution of Y to the attribute vector o~. Although the parametric forms differ, the universal 
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simplifying assumption is conditional independence. For a response pattern y, the conditional 
distribution is given by 

J 

P(Yl  a) = I-I P(yi I a).  
j = l  

All of the models for the item response functions (IRFs) P(yj  I a )  that we consider require 
construction of a Q-matrix (Tatsuoka, 1985), which is a matrix that indicates which attributes are 
needed for each item. Q is a J x K matrix with j, k entry qjk = 1 if the correct application of 
attribute k influences the probability of correctly answering the j th  item, and equals 0 otherwise. 
Several useful models of this sort are discussed below. 

2.1.1. DINA Model 

The deterministic inputs, noisy "and" gate (DINA) model is an example of a stochastic 
conjunctive model. It is conjunctive in the sense that all attributes specified in Q for an item 
are required, and having only a fraction of them results in a success probability equal to that of a 
subject possessing none of the attributes. The stochastic element of the model is that having all of 
these attributes does not guarantee a correct response, and lacking all of them does not guarantee 
an incorrect response. The deterministic aspect of the model pertains to the generation of a latent 
response rlij, which is precisely determined by ai,  the attribute vector for the ith subject, and q j ,  

]7 K O[cl J k the row of Q that corresponds to the j th  item through the equation tli j = 1 lk=l ik " 

The deterministic latent response tlij indicates whether or not subject i possesses all of the 
attributes required for item j .  The parameters for a correct response to item j are denoted by 
sj and gj. The parameter sj refers to the probability of slipping and incorrectly answering the 
item when tlij : 1, and gj is the probability of correctly guessing the answer when tlij : O. 
Maris (1999) alternatively describes gj as the probability of successfully relying on other mental 
resources. The parameters sj and gj are formally defined by 

The IRF is then 

Sj = P ( Y i j  = 0 I tlij = 1) a n d  g j  = P ( Y i j  = 1 I tlij = 0). 

P ( Y i j  = 1 I~e) = (1 - S j ) , l i j g j - , l i j l  

Assuming conditional independence as well as independence among subjects, the j oint like- 
lihood function of the DINA model is 

N J 
L(S ,g ;OL)  = I ' - I I ' - I  [ s~ -Y iJ ( I - - s ' )Y i jT t I i J  [ g ~ i J ( e - - g j ) l - y i J ]  J 

i=1 j = l  

The conditional distribution of Yij depends on ai only through rlij. Because of this reduc- 
tion, many different attribute patterns may result in the same latent response. Thus, as discussed 
in Tatsuoka (1995) and Tatsuoka (2002), the conditional distribution of an item response variable 
generates equivalence classes of attribute vectors. A test design issue is constructing items so that 
the equivalence classes generated by the distribution of an item response vector Y are small, and 
consist of similar attribute patterns. It is often unrealistic to require equivalence classes of single 
attribute patterns. 

The parsimonious DINA model requires only two parameters for the conditional distribu- 
tion of each item, and serves as a simple and interpretable model that is appropriate when the 
conjunction of several equally important attributes is required, and lacking one required attribute 
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is the same as lacking all the required attributes. Applications of the DINA model along with 
MCMC algorithms for estimation are given in Junker and Sijstma (2001) and Tatsuoka (2002). 
The DINA model is also discussed in Macready and Dayton (1977), Haertel (1989), and Doignon 
and Falmagne (1999). 

2.1.2. NIDA Model 

The noisy inputs, deterministic, "and" gate (NIDA) model was introduced in Maris (1999). 
The NIDA model, like the DINA model, involves latent response variables determined in a con- 
junctive manner, but "noisy inputs" refers to the stochastic nature under which these latent re- 
sponses are determined from o~. A fundamental difference between the DINA model and the 
NIDA model is that DINA has item-level parameters whereas NIDA has attribute-level parame- 
ters. However, the stochastic element of the latent responses in the NIDA model may be closer 
to the underlying cognitive process. A thorough and more psychologically oriented discussion of 
multicomponent latent response models is given in Embretson (1997). 

L e t  t l i j k  indicate whether the ith subject correctly applied the kth attribute in completing the 
j th  item. Again, we define probabilities of "slips" and "guesses" However, for the NIDA model 
they are defined at the level of the latent response variables, 

Sk = P ( t l i j k  = 0 I ~ i k  = 1, qjk = 1) and gk = P ( t l i j k  = 1 I C~ik = O, qjk = 1). 

As a technical m a t t e r  P ( t l i j k  = 1 I q j k  = 0)  is set equal to 1, regardless of the value of ~ik. 
According to the model an item Yij will be correct if all of the latent responses are successful. 

This can be expressed by Yij = ~I~=1 tlijk. By assuming the latent responses are independent 
conditional on o~i, the IRF has the form 

K K 

P(Yij = 1  Ioei, s, g ) =  I - I  P(rlijk = 1  I~ik, Sk, g k ) =  I - I  [ ( 1 -  Sk)Ceikgl--ceik] ctjk . 
k = l  k = l  

By assuming conditional independence of item responses given oe as well as independence 
among subjects, the likelihood function is given by 

L(s, g; a~) = I - I  I - I  [ ( 1 -  Sk) g k ]  Ofik 1--°fik cljk 1 -  [ ( 1 -  ) g k S k  Ofik 1--°fik cljk 

i = l j = l  k = l  k = l  

The NIDA model as presented here and in Junker and Sijstma (2001) is actually a simplification 
of the conjuctive model given in Maris (1999), in which s and g are allowed to vary across the 
items. DiBello, Stout, and Roussos (1995) developed the Unified Model, which is yet another 
extension of the NIDA model. In the Unified Model s and g are allowed to vary across the items, 
and a single continuous latent trait is incorporated into the conditional distribution as a way to ac- 
count for attributes which were either purposely or accidentally omitted from the Q-matrix. The 
parameters of the Unified Model as presented in DiBello et al. (1995) are not identifiable. Hartz 
(2002) rectified this by reparametrizing the model, which made possible an MCMC approach for 
parameter estimation. Another related approach is Embretson's (1997) noncompensatory multi- 
dimensional item response model for multicomponent latent responses. In this model the latent 
trait vector is comprised of continuous latent traits rather than binary attributes. 

2.1.3. Logistic Model 

The models given above are examples of conjunctive models, in which attaining the highest 
probability of a correct response for an item requires all of the attributes specified by Q for that 
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item. A disjunctive model differs in that possession of a subset of the attributes can completely 
compensate for the lack of the others. Such models can be useful and theoretically justified 
in instances when there are several possible strategies for solving a problem. A discussion of 
disjunctive models is given in Maris (1999). 

Disjunctive models are closely related to compensatory models, in which lacking certain 
attributes can be compensated for by possessing other attributes. In fact, a disjunctive model  
is a special case of a compensatory model in which it is possible to completely compensate. 
The linear logistic model (LLM) is a simple compensatory model that is considered in Maris 
(1999) as well as in Hagenaars (1990, 1993). It is quite similar to the item-factor analysis and 
multidimensional item response models of Muthdn (1978), Bock and Aitken (1981 ), and Reckase 
(1997). The only noteworthy distinction is that the latent variables in this model are binary rather 
than continuous. The IRFs for the LLM have the form 

P(Yij  = 1 I oei , / I j )  = exp[fioj + ~kX__l fikjO~ik] 
K 1 q- exp[/3oj + ~ k = l  ~kjceik] 

w h e r e  cgij is the indicator of the kth attribute for the ith subject as before, and fikj is the log-odds 
ratio for attribute k and item j .  

A related unidimensional IRT model  is the linear logistic test model (LLTM) (Draney, 
Pirolli, & Wilson, 1995; Fischer, 1995). The LLTM is a Rasch item response model that uti- 
lizes a Q-matrix to model how separate cognitive operations combine to influence the difficulty 
parameter of the model. In this manner, differences between difficulty parameters are completely 
due to the set of cognitive operations required by the items. 

Most  cognitive theories utilizing single strategies for i tem responses naturally lead to con- 
junctive and noncompensatory models rather than compensatory models. Nevertheless, the LLM 
is quite similar to the most common multidimensional i tem response models, and we consider 
this model in subsequent sections to investigate if  it can adequately model  data and classify 
subjects even when responses are generated from a conjunctive process. 

2.2. Joint Distribution of  Attributes 

After specifying the conditional distribution of Y given o~, a final step in the model is to 
consider the probabil i ty distribution of o~. The saturated model for the 2 g possible values that o~ 
can take requires 2 K - 1 parameters, so some simplification might be desired when the dimension 
of o~ is larger than K = 3 or perhaps K = 4. 

Maris (1999) discusses several possible models for latent class membership. One of the 
simplest is the independence model, in which the components of ee are assumed to be statisti- 
cally independent. This requires estimating K parameters for the joint  distribution, which are the 
population proportions for each attribute. However, this model would not generally be plausible 
in the context of cognitive diagnosis when the components of o~ can be viewed as knowledge 
states that may be associated with some notion of general intelligence. In a later section we will 
demonstrate how this assumption can result in a poorly fitting model. An alternative would be 
to construct a loglinear model for the distribution of o~, which can range from a relatively par- 
simonious main effects model to more complicated models with any order of interactions. Yet 
another method is to assume that o~ arises by dichotomizing each component of a multivariate 
normal variable ee* (Hartz, 2002). If  we assume known variances of the ceO's for k = 1, 2 . . . . .  K,  
there remain K (K ÷ 1)/2 unknown parameters to estimate, including K threshold parameters 
and K ( K  - 1)/2 unknown terms of the tetrachoric correlation matrix. 

The models we consider stem from the observation that, despite the aim of obtaining specific 
cognitive diagnostic information, many of the examinations used for this purpose could also be 
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seen as primarily measuring a small number of general abilities. Whether a diagnostic model or 
an IRT model is used reflects the desire for formative or summative assessment, respectively. Our 
approach is to combine these points of view by assuming conditional independence of Y given 
oz, and also assuming that the components of oz are independent conditional on 0, a latent vector 
representing general ability in the studied domain. 

In the context of cognitive diagnosis, Tatsuoka (1995) refers to oz as a knowledge state. 
Specifically, each element of oz is an indicator for knowledge or mastery of a very specific rule 
or piece of information. A model  for attainment of these attributes would be to assume that 
their acquisition is related to one or more broadly-defined constructs of general intelligence or 
aptitude. Those with greater aptitude more readily acquire the specific attributes that are required 
for the test items. This notion essentially induces an item response model at a higher order in 
which the latent attributes play the role of the items and they are locally independent given the 
general aptitude for acquiring knowledge in this domain, which is represented by 0. 

In an example of fraction subtraction given in a later section, specific rules for manipulat- 
ing fraction and whole numbers and subtracting them are identified, and are used to define the 
attribute vector oz. In this somewhat narrow domain it is reasonable to assume that mastery of 
such rules is related to a unidimensional trait 0, which might be interpreted as general arithmetic 
ability. In more complex settings, a multidimensional 0 might be required. In either case, the 
probabil i ty model for oz conditional on 0 is 

K 

P(oz l  0) = 1--I P(c~k 0). (1) 
k = l  

The particular model  that we consider is a logistic regression model with latent covariate 0 

exp()~0k + A~ 0) 
P(cek I 0 ) - -  1 + exp()vok ' + A k 0)" (2) 

In many applications, such as the one given in this paper, 0 will be unidimensional and nor- 
mally distributed with mean 0 and variance 1. This implies that 2K parameters will be required. 
If  D is multidimensional,  a structured factor loading matrix would be used, where Ak denotes the 
factor loading vector corresponding to C~k. Just as expert opinion is used to construct Q, expert 
opinion is also used in deciding for each C~k which components of Ak are nonzero. Because the 
number of attributes would generally need to be much less than the number of items and much 
greater than the dimension of 0, the cases D = 1 and D = 2 would encompass the majority of 
applications. For this reason we have primari ly focused on the case where D = 1, and recognize 
that the two-dimensional case may also be of practical value. In that case, one needs to fit the K 
intercepts )~0k, as well as the nonzero factor loadings. With a factor loading matrix sufficiently 
structured to ensure identifiability, the remaining parameter to fit is p, which is the correlation 
between 01 and 02. 

This hierarchy where the item responses are independent given oz, and the components of oz 
are independent given 0, is natural in conjunctive models for cognitive diagnosis. In such models, 
we consider knowledge of oz as sufficient for determining item responses apart from random slips 
and guesses in a latent response model. However, the joint  distribution of oz must be modeled, 
and in many cases, it may be reasonable to think of the components of oz as independent given a 
more broadly-defined ability 0. 

Modeling the joint  distribution of oz using higher-order latent traits has several advantages. 
It greatly reduces the complexity of the saturated model in cases where it is reasonable to view 
the examination as measuring one or perhaps two general abilities in addition to the specific 
knowledge states that comprise oz. The linear logistic model that we have proposed is rather easy 
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to fit using Markov chain Monte Carlo. Finally, it enables one to classify each cek and obtain an 
estimate 0 in the same analysis. In an example to follow, we will demonstrate how this estimator 
correlates with ability estimates obtained from a two-parameter logistic (2PL) item response 
model fitted with the same data. 

3. Parameter Estimation 

In estimating the parameters of the models, a fully Bayesian formulation was adopted. 
The complexity of the joint posterior distribution (see (9) below) precluded sampling directly 
from the posterior distribution; hence, sampling was carried out using Markov chain Monte 
Carlo (MCMC) simulation. In addition, because the full conditional distributions cannot also be 
sampled directly, samples were iteratively drawn from these distributions using the Metropolis- 
Hastings algorithm (Casella & George, 1992; Chib & Greenberg, 1995; Geman & Geman, 1984; 
Patz & Junker, 1999a, 1999b). Parameter estimates were based on the mean of the draws of the 
remaining iterations after the burn-in. 

3.1. The Higher-Order DINA Model  

3.1.1. Prior, Joint, and Conditional Distributions 

The following prior distributions for A, 0, oe, g, and s are used in conjunction with the 
higher-order DINA model. 

)~ok ~ Normal(/~Zo, a2 ) (3) 
~,o 

)~lk ~ Lognormal(/~Zl, a~l ) (4) 

Oi ~ Normal(/~o, ao 2) (5) 

c~iklOi, Ak ~ Bernoulli ({1 + exp(-1.7)~lk(O/ - )~ok)} - 1 )  (6) 

gj ~ 4-Beta(vg, O)g, ag, bg) (7) 

1 - sj ~ 4-Beta(vs, O)s, as, bs) (8) 

4-Beta(v,  o9, a, b) is the four-parameter beta distribution, and for a < x < b its density function 
is given by 

f ( x )  = 
( x  - a )  ~ - 1  (b  - x )  °~-1 

~ ( v ,  o ) ) (b  - a )  ~+°~-1 ' 

where/~(v,  o)) = r.,jo u~- l (1  - u)°)- i  du.  The functional forms of the prior distributions were 
chosen out of convenience, and the associated hyperparameters were selected to be reasonably 
vague within the range of realistic item parameters. With the large sample sizes worked with in 
this paper, the prior distributions have little influence. 

Using the conditional independence of Y given oe, and oe given O, the joint posterior distri- 
bution of A, O, oe, g, and s given Y is 

P(A,  0, a ,  s, glY) <x L(s, g; ~ ) P ( ~ I A ,  O ) P ( A ) P ( O ) P ( g ) P ( s ) .  (9) 

Finally, the full conditional distributions of the parameters given the data and the rest of the 
parameters are as follows: 
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P(AIY, 0, oz, s, g) (x P(ozlA, 0)P(A)  

P(01Y, A, oz, s, g) (x P(ozlA, O)P(O) 

P(~IY, A, O, s, g) ~ L(s, g; ~)P(~IA, O) 

P(s, glY, A, O, a)  cx L(s, g; ol)P(s)P(g) 

(10) 

(11) 

(12) 

(13) 

Below is an outline of the MCMC algorithm used in the parameter estimation. At iteration t: 

1. For A, draw the candidate values )~k / from Uniform()~k- 1) 
- ~O4o, '~ok + 340) and )~)  from 

( t - l )  

_ ~ ( t - 1 )  Unif°rm()~k -1) ~)~1' "~lk -~- ~)~1) , and accept A(*) with probability 

P(°l(t-1)lO(t-1)'A(*))P(A(*)) 1} (14) 
p(A (t-l), A (*)) = min p(o~(t-1)lO(t-1), A(t-1))p(A(t-1))' 

2. For 0, draw the candidate value O} *) from Normal(Oi (t-l), a~o), and accept 0 (*) with proba- 
bility 

e(°l(t-1)lO(*)'A(t))e(o(*)) 1} (15) 
p (O (t-l), O (*)) = min p(ol(t_l)lO(t_l),A(t))p(o(t_l)), 

3. For ~, draw the candidate value a}~ ) from Bernoulli(.5), and accept ~(*) with probability 

p ( f f ( t - 1 ) ,  if(*)) = min L(s(t-1), g(t-1); o~(.))p(o~(.)lO(t), A(t)) } 
L(s(t-1), g(t-1); o~(t-1))p(o~(t-1)10(t), A(t)) ' 1 (16) 

_(t-l) ~(.) 4. For {g, s}, draw the candidate values g}; ) from Uniform(g~k -1) --3g, gjk +3g)  and ajk 

from Uniform(s~k -1) ° (t-l) -- Os, gjk + 3s), and accept {g(*), s(*)}) with probability 

L(s(*), g(*); ol(t))p(s(*))P(g (*)) 1 } p ({g(t-l/, s(t-l/}, {g(*/, s(*/}) = min 
L (s(t--'7~ i ~ o l ( t ) ) p ( s ( t - 1 ) ) p ( g ( t - 1 ) )  ' 

(17) 

3.2. The Higher-Order Linear Logistic Model 

The same prior distributions for A, 0, and ~ as in the DINA model were used for the higher- 
order LLM. The prior distributions for/3 were 

/~jo ~ 4-Beta(v~o, O)~o, a~o, b~o) (18) 

/~jk ~ 4-Beta(v~j, o)~j, a~j, b~j) (19) 

By replacing the item parameters {s, g} with/3, the joint posterior and full conditional dis- 
tributions of the parameters of the higher-order LLM can be expressed in the same way as (9) 
through (13). 

Lastly, the MCMC algorithm for this model is also the same as that of the previous model 
except for step 4, which was carried out as 

t~(*) (t-l) . 4. For /3, draw the candidate values ejo from Normal(/~jo , c~C2~o) and /~jk from Normal 

(~(t-1) 2 , and accept/3(*) with probability Pjk  , UCfij ), 
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p(l l  ( t- l) , /3 (*)) = min { 
L ([1(*); ~( t ) )P ([1(*)) 

L(~(t-1);  oL(t))p(~(t-1)) ' 1} (20) 

4. Simulation Study 

4.1. Method 

To investigate how accurately the parameters of the models can be recovered using the esti- 
mation method described above, 25 data sets with five attributes, 30 items and 1000 examinees 
for each model were simulated. The structural parameters, namely A and s, g, and/3, were fixed 
across the 25 replications. For each replication, Oi was generated from Normal(0, 1), and C~ik 
was generated from Bernoulli({1 + exp(--1.7)~lk(Oi -- )~0k))}-l). The Q-matrix used in the sim- 
ulation study can be found in Table 1. This Q-matrix was constructed such that each attribute 
appears alone, in a pair, or in a triple the same number of times as other attributes. 

For the prior distributions of A and 0, the parameters /~ and o -2 were set 0 and 1. The 
distributions 4-Beta(.4, 1, 2, 1), 4-Beta(0, .6, 1, 2), 4-Beta(-2 .5 ,  0, 2, 2.5), and 4-Beta(.5/Kj,  
5~K j, 1, 2) (where Kj is the number of relevant attributes for item j )  were used as priors of 1 - s ,  
g, 13o, and fijk, respectively. Each chain in the simulation study was of length 5000. The draws 
from the first 1000 iterations were discarded, and parameter estimates were based on the draws 
from the last 4000 iterations. Using the convergence criterion of Gelman and Rubin (1992) as 
implemented in the software CODA (Best, Cowles, & Vines, 1995) we verified that a burn-in of 
1000 iterations, followed by 4000 iterations, is more than sufficient. Gelman and Rubin (1992) 
defined an index / ) ,  which uses multiple parallel Markov chains to estimate the portion of the 
posterior mean estimator that is due to Monte Carlo error. A rule of thumb is tha t / )  should be 
less than 1.2. By running five parallel chains for the first simulated data set, this criterion was 
satisfied for all structural parameters. 

For each simulation, parameters that are common to the two models (i.e., A, 0, and ~) 
were estimated using both the DINA model and the LLM; the item parameters, s, g, and/3, were 
estimated using the appropriate models. 

TABLE 1. 
The Transposed Q-matrix for the Simulation Study 

Item 

Attribute 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 
2 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 
3 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 
4 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 
5 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 

Item 

Attribute 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 
2 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 
3 0 0 1 1 0 1 0 0 1 1 0 1 1 0 1 
4 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 
5 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 
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TABLE 2. 
Mean and SD of X Estimates over 25 Independent Replications for Data Generated Using the DINA Model 

Parameter DINA LLM 

Attribute )~0 )~1 20 SD(•0) 21 SD(21) 20 SD(20) 21 SD(21) 

1 -0.95 1.34 -1.00 0.14 1.34 0.32 0.51 0.42 2.41 0.69 
2 -1.42 1.22 -1.49 0.14 1.29 0.22 -0.78 0.35 1.27 0.37 
3 -0.66 1 . 0 8  -0.67 0.07 1.11 0.13 -0.41 0.08 1.21 0.19 
4 0.50 1.11 0.49 0.08 1.11 0.16 0.73 0.09 1.55 0.24 
5 -0.05 0.97 -0.04 0.08 0.94 0.17 0.22 0.10 1.00 0.19 

4.2. Results 

The mean estimates and standard deviations of the estimates for A, the parameters which 
determine the population proportions for each attribute, are given in Tables 2 and 3. The results 
indicate that using the correct model impacts both the accuracy and the stability of the estimates. 
For example, in Table 2 where the data were generated using the DINA model, the estimates 
based on the DINA model are closer to the true values compared to estimates based on the LLM. 
At the same time, the standard deviations of the estimates obtained using the DINA model are 
smaller compared to the corresponding standard deviations using the LLM. The corresponding 
results were seen for data generated using the LLM given in Table 3. 

The posterior mean of examinee i on attribute k, ~ik, was used in determining whether 
or not the examinee possesses this attribute. Only when ~ik > .5, was examinee i considered 
to possess attribute k. The mean proportion of attributes correctly classified by each model for 
all the simulated data are given in Table 4. The importance of using the correct model is again 
evident from these results. Although a high number of attributes were still correctly classified 

TABLE 3. 
Mean and SD of ~ Estimates over 25 Independent Replications for Data Generated Using the LLM 

Parameter DINA LLM 

Attribute )~0 )~1 20 SD(20) 21 SD(21) 20 SD(20) 21 SD(21) 

1 -0.95 1.34 -1.43 0.20 1.58 0 .31 -1.01 0.18 1.39 0.20 
2 -1.42 1.22 -1.70 0.23 1.47 0.29 -1.36 0.21 1.19 0.22 
3 -0.66 1 . 0 8  -1.15 0.15 1.42 0.25 -0.70 0.12 1.18 0.22 
4 0.50 1.11 0.28 0.12 1.59 0.35 0.56 0.12 1.29 0.23 
5 -0.05 0.97 -0.74 0.15 1.34 0.36 -0.07 0.12 0.98 0.19 

TABLE 4. 
Mean of Proportion of Correct oz Classification and Agreement over 25 Replications 

Generating Model 

DINA LLM 
Fitted 
Model ~1 ~2 ~3 ~4 ~5 ~1 ~2 ~3 ~4 ~5 

DINA 0.88 0.90 0.93 0.97 0.92 0.84 0.89 0.87 0.91 0.80 
LLM 0.70 0.83 0.90 0.96 0.88 0.89 0.91 0.90 0.95 0.87 

K 0.44 0.66 0.85 0.93 0.83 0.70 0.76 0.81 0.86 0.69 
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TABLE 5. 
Mean Correlation and RMSE Between 0 and 0 over 25 Replications 

Generating Model 

DINA LLM 
Fitted 

Model Correlation RMSE Correlation RMSE 

DINA 0.78 0.63 0.76 0.67 

LLM 0.76 0.65 0.76 0.65 
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even with misspecified models, the proportions of attributes correctly classified using the right 
models were consistently higher. The x statistic is a chance-corrected index of agreement, which 
is the ratio of the number of agreements minus what would be expected by chance and the 
expected number of disagreements due to chance (Everitt, 1998). The x statistics in this table 
indicate that the agreements between the two fitted models in classifying the examinees are very 
high. 

Two measures of fit were used to evaluate how accurately 0 can be estimated: (1) the cor- 
relation between the true and estimated 0, and (2) the root mean squared error (RMSE) of the 
estimates from the true 0. These measures were computed for each replication, and the results in 
Table 5 are averages over the 25 replications. Results show that specifying the correct model re- 
suited in better estimates (i.e., higher correlation and lower RMSE). Nevertheless, the differences 
are small, which may indicate that specifying the Q-matrix correctly is of greater importance than 
identifying the correct response model. However, this needs to be investigated further. 

Table 6 shows that the item parameters of the DINA model can be accurately estimated 
using MCMC simulation. For almost all the items, the mean estimates do not deviate from the 
true value by more than 0.02. At  the same time, the estimates across the 25 replications have 
small variabilities. 

Similarly, the parameters of the LLM were accurately estimated by the MCMC algorithm 
(see Table 7). However, it can be noted that the estimates for this model  were not as accurate and 
as stable compared to the estimates for the DINA model. This may be due to the greater number 
of i tem parameters in the LLM, and the wider range of values the parameters can assume. 

5. Fraction Subtraction Test 

5.1. Data 

The data consist of responses to 20 items involving subtraction of fractions by 2144 exam- 
inees. They were originally used and described by Tatsuoka (1990), and were recently analyzed 
in Tatsuoka (2002). The eight attributes required to answer these items are: (1) Convert a whole 
number to a fraction, (2) Separate a whole number from a fraction, (3) Simplify before subtract- 
ing, (4) Find a common denominator, (5) Borrow from whole number part, (6) Column borrow 
to subtract the second numerator from the first, (7) Subtract numerators, and (8) Reduce answers 
to simplest form. Based on these definitions, the Q-matrix of attributes necessary to correctly 
answer each item were constructed (refer to Table 8). Because all the required attributes must 
be present before an examinee can correctly answer an item, a conjunctive model  was appropri- 
ate for this problem. Our analysis of the data indicated that the DINA model provided a better fit 
compared to the NIDA model. Hence, the DINA model with a common discrimination parameter 
for the higher-order latent trait was used. Also, because of the complexity of the compensatory 
model, which requires many more parameters than the DINA model, all attempts to estimate 
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TABLE 6. 
Mean Estimates of the Parameters of the DINA Model over 25 Replications 

Item g 1 - s ~ SD(~) 1 - g SD(1 - g) 

1 0.35 0.67 0.33 0.04 0.67 0.02 
2 0.40 0.66 0.37 0.05 0.66 0.02 
3 0.13 0.67 0.12 0.03 0.67 0.02 
4 0.15 0.90 0.14 0.01 0.89 0.02 
5 0.29 0.65 0.29 0.02 0.65 0.02 
6 0.39 0.60 0.38 0.04 0.60 0.02 
7 0.10 0.61 0.11 0.05 0.61 0.02 
8 0.40 0.81 0.39 0.03 0.80 0.02 
9 0.15 0.74 0.15 0.02 0.74 0.02 

10 0.16 0.76 0.17 0.02 0.75 0.03 
11 0.38 0.73 0.38 0.04 0.73 0.02 
12 0.11 0.83 0.11 0.02 0.83 0.02 
13 0.26 0.89 0.26 0.02 0.89 0.01 
14 0.35 0.85 0.35 0.02 0.83 0.02 
15 0.13 0.87 0.15 0.02 0.87 0.02 
16 0.18 0.69 0.18 0.02 0.69 0.02 
17 0.26 0.75 0.26 0.02 0.75 0.02 
18 0.11 0.70 0.11 0.01 0.70 0.03 
19 0.37 0.80 0.37 0.02 0.80 0.02 
20 0.23 0.84 0.23 0.01 0.83 0.02 
21 0.38 0.85 0.37 0.02 0.85 0.02 
22 0.20 0.89 0.20 0.02 0.89 0.02 
23 0.23 0.63 0.24 0.02 0.64 0.03 
24 0.10 0.73 0.10 0.01 0.72 0.03 
25 0.30 0.72 0.29 0.02 0.72 0.03 
26 0.11 0.82 0.12 0.01 0.82 0.03 
27 0.11 0.73 0.11 0.01 0.73 0.03 
28 0.22 0.73 0.22 0.01 0.73 0.02 
29 0.12 0.79 0.13 0.01 0.79 0.02 
30 0.23 0.69 0.22 0.01 0.68 0.03 

pa rame te r s  resu l ted  in M a r k o v  cha ins  for w h i c h  conve rgence  could  not  b e  obta ined .  This  is in 

con t ras t  to the  s imula t ion  study, in w h i c h  M C M C  cou ld  b e  u sed  to fit the  c o m p e n s a t o r y  mode l ,  

even  in cases w h e r e  the  data  we re  gene ra t ed  us ing  the  D I N A  model .  Two vers ions  of  the  D I N A  

mode l  were  u sed  to ana lyze  the  data:  the  h ighe r -o rde r  D I N A  m o d e l  tha t  pos i t s  a h ighe r -o rde r  

s t ruc ture  a m o n g  the  at t r ibutes ,  and  the  i n d e p e n d e n c e  D I N A  mode l  tha t  d is regards  any h igher -  

order  s tructure.  T he  pr ior  d i s t r ibu t ions  desc r ibed  in the  s imula t ion  sec t ion  we re  used  for the  

re levan t  pa rame te r s  of  the  two mode ls .  

Pa rame te r  e s t imates  were  based  on ave rag ing  the  es t imates  f rom 10 para l le l  cha ins  wi th  

r a n d o m l y  c h o s e n  s tar t ing values.  T he  squared  s tandard  errors  were  ob ta ined  b y  averag ing  the  

s ample  va r iances  of  the  pa rame te r s  f rom the  separa te  chains .  Each  of  these  para l le l  cha ins  was 

run  for 20000  i te ra t ions  wi th  the  first 10000 i te ra t ions  as burn- in .  This  cho ice  of  cha in  l eng th  

was conserva t ive ,  bu t  eas i ly  sat isf ied G e l m a n ' s  and  R u b i n ' s  ru le  t h a t / ~  be  less than  1.2, wi th  an 

excep t ion  of  one  parameter .  This  was  a loca t ion  p a r a m e t e r  for the  h ighe r -o rde r  DINA,  and  had  a 

/~ of  a p p r o x i m a t e l y  1.58. 
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TABLE 7. 
Mean  Estimates of  the Parameters  of  the L L M  over 25 Replicat ions 
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Item /30 /31 /32 fi0 SD(fi0) fil SD(fi l )  fi2 SD(fi2) 

1 - 0 . 6 2  1.32 - - 0 . 6 8  0.15 1.40 0.19 - - 

2 - 0 . 4 3  - 1.11 - 0 . 5 3  0.19 - - 1.24 0.23 

3 - 1 . 9 3  - - - 1 . 8 6  0.19 . . . .  

4 - 1 . 7 4  - - - 1 . 6 8  0.13 . . . .  

5 - 0 . 8 9  - - - 0 . 9 4  0.13 . . . .  

6 - 0 . 4 5  0.86 - - 0 . 5 7  0.12 1.02 0.14 - - 

7 - 2 . 1 5  - 2.59 - 1 . 9 4  0.13 - - 2.38 0.15 

8 - 0 . 3 9  - - - 0 . 4 5  0.10 . . . .  

9 - 1 . 7 6  - - - 1 . 7 6  0.08 . . . .  

10 - 1 . 6 4  - - - 1 . 6 5  0.13 . . . .  

11 - 0 . 4 8  1.00 0.49 -0 .71  0.14 0.99 0.16 0.75 0.20 

12 - 2 . 0 5  1.70 - - 1 . 9 0  0.15 1.59 0.21 - - 

13 - 1 . 0 6  1.67 - - 1 . 0 7  0.16 1.67 0.18 - - 

14 - 0 . 6 2  1.32 - - 0 . 6 6  0.13 1.33 0.14 - - 

15 - 1 . 8 7  - 1.88 - 1 . 6 7  0.17 - - 1.69 0.17 

16 - 1 . 5 2  - 0.92 - 1 . 5 4  0.20 - - 0.97 0.24 

17 - 1 . 0 4  - 0.99 - 1 . 1 3  0.25 - - 1.08 0.24 

18 - 2 . 0 5  - - - 1 . 9 4  0.11 . . . .  

19 - 0 . 5 3  - - - 0 . 6 2  0.14 . . . .  

20 - 1 . 1 9  - - - 1 .21  0.12 . . . .  

21 - 0 . 4 9  0.65 0.81 - 0 . 5 8  0.17 0.74 0.14 0.85 0.17 

22 - 1 . 3 6  1.08 1.17 - 1 . 3 0  0.18 1.07 0.19 1.12 0.15 

23 - 1 . 1 8  0.74 0.52 - 1 . 2 3  0.16 0.69 0.15 0.60 0.12 

24 - 2 . 1 9  1.25 - - 1 . 9 8  0.11 1.00 0.14 - - 

25 - 0 . 8 6  0.77 - - 0 . 9 3  0.11 0.73 0.16 - - 

26 - 2 . 0 7  1.40 - - 1 . 8 7  0.13 1.14 0.11 - - 

27 - 2 . 0 6  - 1.17 - 1 . 8 2  0.14 - - 0.95 0.17 

28 - 1 . 2 4  - 0.77 - 1 . 2 8  0.15 - - 0.75 0.14 

29 - 1 . 9 5  - 1.33 - 1 . 7 3  0.12 - - 1.11 0.12 

30 - 1 . 2 3  - - - 1 . 2 8  0.13 . . . .  

5.2. Results 

T h e  e s t i m a t e d  p o s t e r i o r  m e a n s  and  the  p o s t e r i o r  s t anda r d  dev i a t i ons  for  b o t h  the  h ighe r -  

o rde r  and  i n d e p e n d e n c e  m o d e l  are s h o w n  in Table  9. Sl ip  and  g u e s s i n g  p a r a m e t e r s  o f  0 r e p r e s e n t  

ideal  c o n d i t i o n s  u n d e r  w h i c h  all a t t r ibutes  h a v e  b e e n  ident i f ied,  the  Q - m a t r i x  h a s  b e e n  c o r r e c t e d  

speci f ied ,  and  r e s p o n s e s  are  de t e rmin i s t i c .  B y  a l l o w i n g  smal l  bu t  n o n z e r o  slip and  g u e s s i n g  pa-  

r a m e t e r s ,  the  m o d e l  a l l ow s  r a n d o m  r e s p o n s e s .  H o w e v e r ,  i f  the  sl ip and  g u e s s i n g  p a r a m e t e r s  

b e c o m e  too large,  o n e  m i g h t  s u s p e c t  e i ther  the  a t t r ibutes  are no t  co r r ec t l y  ident i f ied,  or  the  Q -  

m a t r i x  is no t  co r rec t ly  speci f ied ,  t h o u g h  no  f o r m a l  ru le s  exis t  to test  t he se  a s s u m p t i o n s .  In  our  

ana lys i s  u s i n g  the  h i g h e r - o r d e r  m o d e l ,  g u e s s i n g  p a r a m e t e r s  r a n g e d  f r o m  0.00 to 0 .44 wi th  17 ou t  

o f  20 less  than  0.20.  Sl ip p a r a m e t e r s  r a n g e d  f r o m  0.04 to 0.33 wi th  16 ou t  o f  20 less  than  or  equa l  

to 0.20.  S i m i l a r  r e su l t s  h a v e  b e e n  o b s e r v e d  b y  T a t s u o k a  (2002) .  

H i g h  e s t i m a t e s  for  g u e s s e s  or  s l ips  are  i nd ica t ions  o f  p o o r  fit. In  par t icu la r ,  they  s u g g e s t  that  

the  p o s i t e d  a t t r ibutes  m a y  no t  b e  suf f ic ien t  in e x p l a i n i n g  the  r e s p o n s e s  o f  the  e x a m i n e e s ,  that  is, a 

d i f fe ren t  s t r a t egy  for  a n s w e r i n g  the  p r o b l e m  m a y  exist .  F o r  e x a m p l e ,  the  e s t i m a t e  for  the  g u e s s -  

ing  p a r a m e t e r  o f  i t e m  8 is 0 .44 u s i n g  the  h i g h e r - o r d e r  m o d e l  and  0 .47 u s i n g  the  i n d e p e n d e n c e  
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TABLE 7. 
(continued) 

I t e m  /33 /34 /35 fi3 S D ( f i 3 )  fi4 S D ( f i 4 )  fi5 S D ( f i 5 )  

1 . . . . . . . . .  

2 . . . . . . . . .  

3 2 . 6 2  - - 2 .53  0 .21  . . . .  

4 - 3 . 9 5  - - - 3 . 9 4  0 . 2 6  - - 

5 - - 1 . 52  . . . .  1 .60  0 . 1 9  

6 . . . . . . . . .  

7 . . . . . . . . .  

8 1.81 - - 1 .90  0 . 1 6  . . . .  

9 - 2 . 8 0  - - - 2 .81  0 .15  - - 

10 - - 2 . 7 9  . . . .  2 . 7 6  0 . 1 6  

11 . . . . . . . . .  

12  1 .95  - - 1 .85 0 . 1 5  . . . .  

13 - 1 .43  - - - 1 .46  0 . 2 0  - - 

14 - - 1 .01 . . . .  1 .05  0 . 1 7  

15 1 .89  - - 1.81 0 . 1 3  . . . .  

16 - 1 .38  - - - 1 .36  0 . 1 6  - - 

17 - - 1 .13  . . . .  1 .19  0 . 1 8  

18 1 .15  1 .76  - 1 .04  0 . 1 2  1 .73  0 .15  - - 

19 0 . 9 7  - 0 . 9 6  1 .03 0 . 1 7  - - 1 .05  0 . 1 9  

20  - 1 .63  1 .18  - - 1 .59  0 .13  1 .19  0 . 1 4  

21 0 . 7 5  - - 0 . 7 4  0 . 1 2  . . . .  

2 2  - 1 .18  - - - 1 .18  0 . 1 6  - - 

23 - - 0 . 4 6  . . . .  0 . 5 3  0 .11  

2 4  0 . 8 5  1 .05  - 0 . 8 2  0 . 1 4  1 .03  0 . 1 8  - - 

25 0 . 4 8  - 0 .55  0 . 5 6  0 .11  - - 0 . 6 0  0 . 1 2  

26  - 1 .23  0 . 9 6  - - 1 .19  0 . 1 2  0 . 9 8  0 . 1 7  

27  0 . 8 4  1 .07  - 0 . 8 0  0 . 1 4  1 .04  0 . 1 4  - - 

28  0 . 7 6  - 0 .71  0 .81  0 . 1 5  - - 0 . 7 7  0 . 1 5  

29  - 1 .10  0 . 8 5  - - 1 .05  0 .13  0 . 8 8  0 .11  

3 0  0 .61  0 . 7 6  0 . 6 6  0 . 6 7  0 . 1 3  0 . 7 7  0 .11  0 . 6 4  0 . 1 0  

m o d e l .  B a s e d  o n  t h e  Q - m a t r i x ,  t h i s  i t e m  r e q u i r e s  a t t r i b u t e  7 ,  " s u b t r a c t  n u m e r a t o r s , "  t o  b e  c o r -  

r e c t l y  a n s w e r e d .  H o w e v e r ,  t h e  h i g h  v a l u e  o f  t h e  e s t i m a t e  i n d i c a t e s  t h a t  e v e n  e x a m i n e e s  w h o  d o  

n o t  p o s s e s s  t h i s  a t t r i b u t e  h a v e  a g o o d  c h a n c e  o f  a n s w e r i n g  t h e  i t e m  c o r r e c t l y .  A c l o s e r  i n s p e c t i o n  

o f  t h e  i t e m  r e v e a l s  t h a t  e x a m i n e e s  w h o  a r e  f a m i l i a r  w i t h  t h e  i n v e r s e  p r o p e r t y  o f  a d d i t i o n  b u t  d o  

n o t  k n o w  f r a c t i o n  s u b t r a c t i o n  c a n  s t i l l  a n s w e r  t h e  p r o b l e m  , , 2  32 _ "  c o r r e c t l y .  

A l t h o u g h  t h e  i t e m  p a r a m e t e r  e s t i m a t e s  f o r  b o t h  m o d e l s  a r e  q u i t e  s i m i l a r ,  t h e  e s t i m a t e d  

p r o p o r t i o n  o f  e x a m i n e e s  w i t h  t h e  s p e c i f i c  a t t r i b u t e s  w e r e  v e r y  d i s c r e p a n t .  T a b l e  1 0  s h o w s  t h a t  t h e  

i n d e p e n d e n c e  m o d e l  h a s  h i g h e r  e s t i m a t e s  f o r  a l l  a t t r i b u t e s  e x c e p t  f o r  a t t r i b u t e  8 .  I n  a d d i t i o n ,  t h e  

c l a s s i f i c a t i o n  a g r e e m e n t s  o f  t h e  t w o  m o d e l s  f o r  m o s t  o f  t h e  a t t r i b u t e s  a r e  l o w .  T h i s  d i s c r e p a n c y  

w i l l  b e c o m e  a p p a r e n t  w h e n  c o m p u t i n g  t h e  B a y e s  f a c t o r  f o r  t h e  t w o  m o d e l s .  

5.3. Model  Fit 

A m e t h o d  o f  i n v e s t i g a t i n g  t h e  m o d e l  f i t  i s  t o  u s e  t h e  e s t i m a t e d  p a r a m e t e r s  t o  p r e d i c t  t h e  

p a i r w i s e  r e l a t i o n s h i p  o f  t h e  i t e m s ,  s p e c i f i c a l l y ,  t h e  o b s e r v e d  l o g - o d d s - r a t i o  o f  t h e  i t e m - p a i r s .  T h e  

l o g - o d d s  r a t i o  i s  a c o m m o n  m e a s u r e  o f  a s s o c i a t i o n  f o r  b i n a r y  r a n d o m  v a r i a b l e s ,  a n d  is  u s e f u l  

i n  t h i s  c o n t e x t  f o r  d i a g n o s i n g  t h e  c o r r e c t n e s s  o f  t h e  Q - m a t r i x  a s  w e l l  a s  e v a l u a t i n g  t h e  f i t  o f  t h e  
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TABLE 10. 
Estimated Proportion of Examinees Possessing oe and Agreement of Classification 

Attribute 

Model 1 2 3 4 5 6 7 8 

Higher-Order 0.49 0.82 0.70 0.60 0.49 0.85 0.77 0.82 
Independence 0.76 0.94 0.97 0.87 0.76 0.99 0.94 0.66 

x 0.33 0.12 0.05 0.22 0.31 0.00 0.09 0.59 

parametric model. Under the estimated model parameters, the joint distribution for pairs of items 
can be computed, and the log-odds ratio for items j and jl  is 

[P(Yj  = 1, Yj, = 1)P(Yj = 0, Yj, = 0)1 
log [-P(YJ 1, Y /  = O)P(Yj O, Y /  = " 

(21) 

The mean absolute difference between the observed and expected log-odds-ratios of an item 
averaged over the rest of the items were computed for each item. The higher-order model pro- 
duced a smaller mean absolute difference compared to the independence model for all item ex- 
cept item 8. Incidentally for the higher-order model, the mean absolute deviation of item 8 (1.05) 
is the only value that exceeds 0.54, an indication of poor fit for this item. In addition to having 
better fit for almost all of the items, an overall fit, computed as the mean absolute difference 
across the 190 pairs, is also smaller for the higher-order model, 0.43, compared to the indepen- 
dence model, 0.55. 

A more global measure of model fit (i.e., test-level measure as opposed to item-level mea- 
sure) was obtained using the Bayes factor. This is analogous to the likelihood ratio, but is used in 
a Bayesian context, and can be used as measure of evidence for a model with respect to another 
model even when the models are not nested. The Bayes factor, which is the ratio of the marginal 
likelihoods (i.e., the likelihoods after integrating over the model parameters), is computed as 

P(YIMH) 
B H I  - -  (22) 

P (YIM/)  

In (22), 

P(YIMm) = f P(YIAm, sin, gin, Mm)P(Am, sin, gm IMm)dAmdsmdgm (23) 

where Am, sin, and gm are the parameters under Model m, P (Am, sin, gm ]Mm) is the prior density, 
and m = {H, I}. 

Raftery (1996) proposed the Laplace-Metropolis estimator of the marginal likelihood. Drop- 
ping the index Mm, an approximation of the marginal likelihood is given by 

P(Y)  ~ (2~)d/2l~ll/2 p ( y l ~  , g, ~)P(~, g, g) (24) 

where A, g, and ~ are the posterior modes, qJ is asymptotically equal to the posterior variance 
matrix of the parameters as sample size approaches infinity, and d is the number of parameters. 

Because our interest is in the structural parameters (i.e., A, s, g), the incidental parameters, 
0 and oe, needed to be integrated out in computing the P (YIA, g, g). For the higher-order DINA 
model, the conditional likelihood given the structural parameters was 
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P(YIA,s,g)=fP(Yloe, s,g)(fP(oelA, O)P(O)dO)doe, (25) 

and for the independence model, this conditional likelihood was 

P(YIA, /3)  = f P(Yloz , / I )P (~IA)  d~ .  (26) 

Computationally, because of the relatively large sample size, we substituted the posterior 
mean A, g, and g for A, g, and ~, respectively; qJ was estimated by computing the variance matrix 
of the simulation output. In addition, the integration of 0 was approximated using quadrature 
nodes. Hence, the numerator of the Bayes factor in (22) was computed as 

P(Y) ~ (2~)d/21+11/2 ~ ~ P(Yloe, g, g)P(oeln, A)w(n)P(A, ~, g), 
VozEA Vn 

(27) 

where A is the collection of all the possible attribute patterns, n is the quadrature node, and w(n) 
is the weight of the node n. The denominator of (22) was computed in the same manner. 

The log(Bgi) is equal to 46.00, which indicates strong evidence for the higher-order model 
over the independence model (Raftery, 1995; 1996). As mentioned earlier, the difference between 
the log-marginal likelihoods can be traced mainly to the discrepancy in estimating the prevalence 
of the attributes: The higher-order model allows for better estimation of the proportion of the 
population possessing the required attributes. 

5.4. The Higher-Order DINA Model and the 2PL Model 

In addition to a better model fit afforded by the higher-order DINA model, it also allowed 
for the estimation of a broader latent trait within the same procedure. As previously discussed, 
this latent trait can be thought of as the analog of the latent trait in traditional IRT models (e.g., 
the logistic models). Because the test format was not multiple choice, an appropriate IRT model 
for these data is the 2PL model. It should be noted that the guessing parameter for the DINA 
model is more general and refers to any strategy by which one correctly answers an item without 
possessing the required attributes. Thus, it may be used for multiple choice exams, as well as 
other dichotomously scored formats. Two sets of ability estimates, 0, were computed, one using 
the 2PL model and another using the higher-order DINA model. The scatter plot of the these 
estimates is shown in Figure 1. Notwithstanding the shrinkage in the DINA model estimates 
that were based on only 8 attributes, the high correspondence between the two estimates, which 
has a correlation of 0.96, is evident. Therefore, using the higher-order DINA model, inference 
regarding more specific knowledge states and a more general ability trait can be obtained from 
the same data set in a single analysis. 

5.5. Simulation Study Using Parameters Recovered from Actual Data 

To verify whether the results in estimating the parameters of the DINA model obtained 
in the simulation section can be generalized to real data analysis, a simulation study with the 
same characteristics as the fraction subtraction data was conducted. Twenty-five data sets with 
20 items, 8 attributes, and 2144 examinees using the DINA model were simulated. The estimates 
of A, s, and g from the fraction subtraction analysis were used as the structural parameters. 
Compared to the simulation study above, this study involves fewer items, more attributes, and a 
more complex Q-matrix, but at the same time, a larger number of examinees. 

The mean estimates and standard deviations of the estimates for A, and the proportion of 
correct attribute classification, are given in Table 11; the mean estimates and standard deviation of 
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FIGURE 1. 
Scatter Plot of the 0 Estimated Using the Higher-Order DINA Model and the 2PL Model 

the  es t imates  for ~ and  s are g iven  in Table  12. In t e rms  of  accuracy,  these  resul t s  are c o m p a r a b l e  

to the  resul t s  ob ta ined  in the  p rev ious  s imula t ion  s tudy desp i te  the  d i f fe rences  in the  Q-mat r ix ,  

and  the  n u m b e r  of  i tems,  at t r ibutes ,  and  examinees .  It can  be  no t ed  that  g iven  the  s ame  level  of  

accuracy  in e s t ima t ing  ~ ,  ~ ,  s, and  g, the  larger  n u m b e r  of  a t t r ibutes  a l lowed  for m o r e  accura te  

e s t ima t ion  of  0 as ind ica ted  b y  a m e a n  cor re la t ion  b e t w e e n  the  t rue and  es t ima ted  0 of  0.83, and  

a R M S E  of  0.56. 

TABLE 11. 
Estimates and Proportion of oe Correctly Classified (over 25 Replications) 

Proportion 

Attribute )v 0 )v 1 )~0 SD()~0) )~ 1 SD()~ 1 ) correct 

1 0.05 4.94 -0 .03  0.18 4.02 0.45 0.95 
2 -1 .05  1.82 - 1 . 0 6  0.08 1.80 0.13 0.93 
3 -1 .53  0.96 - 1 . 4 0  0.16 1.30 0.30 0.82 
4 - 0 . 2 8  1.96 - 0 . 3 0  0.08 1.99 0.15 0.94 
5 0.03 2.08 0.01 0.09 2.10 0.19 0.95 
6 -1 .45  1.78 - 1 . 3 8  0.18 1.25 0.31 0.78 
7 - 0 . 9 8  3.12 - 0 . 9 7  0.13 2.91 0.32 0.90 
8 - 0 . 8 9  1.60 - 0 . 8 6  0.13 1.56 0.37 0.98 
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TABLE 12. 
Estimation of Guess and Slip Parameters (over 25 Replications) 

Item g 1 - s ~ SD(~) 1 - g SD(1 - g) 

1 0.04 0.90 0.04 0.01 0.90 0.01 
2 0.03 0.96 0.03 0.01 0.96 0.01 
3 0.00 0.88 0.01 0.00 0.87 0.01 
4 0.23 0.89 0.23 0.02 0.89 0.01 
5 0.30 0.83 0.31 0.01 0.83 0.01 
6 0.05 0.96 0.05 0.02 0.96 0.01 
7 0.03 0.80 0.03 0.01 0.80 0.01 
8 0.44 0.81 0.43 0.02 0.81 0.01 
9 0.17 0.75 0.17 0.03 0.75 0.02 

10 0.03 0.79 0.03 0.01 0.79 0.02 
11 0.07 0.92 0.07 0.01 0.92 0.01 
12 0.13 0.96 0.14 0.01 0.96 0.01 
13 0.01 0.67 0.02 0.00 0.67 0.02 
14 0.05 0.94 0.05 0.01 0.93 0.01 
15 0.04 0.89 0.04 0.01 0.89 0.01 
16 0.11 0.88 0.11 0.01 0.88 0.01 
17 0.04 0.86 0.04 0.01 0.86 0.01 
18 0.12 0.85 0.13 0.01 0.86 0.01 
19 0.02 0.76 0.03 0.00 0.76 0.02 
20 0.01 0.84 0.01 0.00 0.84 0.01 

351 

6. Discussion 

When fitting multiple classification latent class models for cognitive diagnosis, difficult 

model selection and model fitting decisions arise. We have investigated the importance of cor- 

rect model specification, and have introduced higher-order latent traits. These higher-order traits 

simultaneously afford a parsimonious model and express the concept of more general abilities 

affecting the acquisition of specific knowledge. Models for cognitive diagnosis are often con- 

structed to recognize the steps that are required in problem solving, and lead to conjunctive 

models in which each step must be correctly executed. Conjunctive models contrast with the 

formulation of most familiar models in item response theory and item factor analysis, in which 

compensatory models are most common. Simulation reveals that using an incorrect model can 

lead to poor attribute classification. Fraction subtraction is an apparent case of a conjunctive pro- 

cess, and we have seen that the DINA model with a single higher-order trait provides a good fit 

and can be used to diagnose the eight attributes that were listed. In this case where a conjunctive 

model is the better choice, the linear logistic model fitted with the same Q gave completely unsat- 

isfactory results that were not reported. A DINA model with statistically independent attributes 

gave more reasonable results than the compensatory model, but the clearly incorrect assumption 

of independence resulted in a fit inferior to that of the higher-order model. However, in some sit- 

uations the use of the compensatory model will be more appropriate. For example, in psychiatric 

or medical diagnosis, a particular symptom is an indication of the presence of at least one of the 

disorders. 

The simulation and real data examples considered here utilized a unidimensional higher- 

order trait. In some applications a two-dimensional higher-order trait will be preferred and minor 

modifications to the M C M C  procedure will be required, which is the addition of a step to esti- 

mate the correlation parameter for the traits. If  an estimate of 0 is desired for scoring in the sense 
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of IRT modeling, a requirement is that there should be many more attributes than higher-order 
traits, and this issue becomes increasingly important as the number of traits increases due to 
the quadratically increasing number of correlation parameters. For this reason we  see unidimen- 
sional and two-dimensional traits as the most feasible and practically useful cases. However, this 
restriction may not be as critical if the higher-order traits are merely nuisance parameters used to 
model the joint distribution of the attributes correctly. 

Higher-order traits can be used with virtually any multiple classification latent class model.  
Algorithms for using MCMC were given for the particular models that we  considered, DINA 
and LLM. Simulation results show that estimation with MCMC is quite effective for both of 
these models using higher-order traits. The MCMC code written in Ox (Doornik, 2002), an 
object-oriented mathematical programming language, run on a 2.5 GHz processor, was capable 
of performing approximately 500 iterations per minute with the fraction subtraction data, which 
included 2144 examinees.  The code for doing this research can be made available by contacting 
the first author. 
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