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Imaging genetic studies aim at mining robust associations between DNA sequence polymorphisms or gene expression level, and
activity recorded in the brain, e.g. using fMRI techniques, during cognitive tasks. From a statistical perspective, this raises interesting challenges since a large amount
of partly collinear predictors generally entails poor model performance (noisy parameters estimates, overfitting and lack of generalizability). Multivariate methods, ‘ j
like PLS regression or CCA, have been proposed to cope with such high-dimensional data sets (N <« P + Q), with appropriate regularization scheme to overcome & o
the curse of dimensionality™*®. With PLS, we seek latent (unobserved) variables that account for the maximum of linear information contained in the X block while N
allowing us to predict the Y block with minimal error, which would likely remain unseen by single-marker analysis |

(1) Validate the use of sparse PLS regression with univariate feature selection for extracting covarying networks of variables in two-block structure, and (2)
Apply this computational framework to candidate SNPs, BOLD signals, and measurement on personality scales.

We generate a two-block data set with a hierarchical For PLS, the optimal number of X features and Y responses vectors is close to those used to
model, where factor loadings F (P x k) stand for intra-block generate the data (77 + 4 “true” signals in both blocks), although we might have expected to
correlations with k blocks of varying size, and G (k x 1) re- find the “best” correlation under the condition 100 features without penalization or with 75% of
flects inter-block correlations. Individuals scores then fol- them kept in the model. For CCA, A; ranging from 0.05 up to 0.125 yields significant correlation,
low an MVN(0y; £), where £ = F(GG')F/, with N subjects. as well as stronger penalties with 100 and 500 X features.

We then applied sparse PLS and CCA models proposed by
Lé Cao et al.”’ and Parkhomenko et al.”” to extract relevant ; Test correlation for PLS Test correlation for CCA Signiﬁcta”dt test Co”e'atioé‘s at 5t‘f/<> (maxz
e e o« o . compute unaer re-randomization, an
X features for explaining/summarizing X — Y links. X Y N N correcting for the number of Y variables)
(N x P) (N x q) ' ' ' ' ' I ' ' ' ' ' I are starred in each case. Below is the
. . 1 | 0- - contribution of each variable in the
Test procedure (PLS regression): o qoarse PLS model (50 x 075 — 187
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3. Estimate PLS soft-thresholded loadings, u; and v;, on

train st. arg max cov(Xn_i1un, Yvu) .
[upl=1,lvp|=1 !

4. Correlate u;X and v;Y (factor scores) on test
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Penalization rate applied on u; and v ranged from 0 to
90%. Other parameters were as follows: N = 90, P = 3000, i
k = 4 blocks in X, of size by ~ U180 for X, and one Y (a7
block. F loadings were sampled in the range [0.2;0.8] and These results suggest that CCA may be less sensitive than PLS regression, although values of
G =[0.1,0.0,0.8,0.0,0.7] (two blocks in X connected to ). {1 penalization do not match exactly soft-thresholding of PLS loadings used therein. Increas-
For sparse CCA, regularization parameters (A;) were choosed so as to be close to % of pruned ing Signal-to-Noise Ratio, or equivalently the reliability of Y measures, emphasizes the role of
variables in PLS. In both case, we only compute the first canonical correlation. penalization when seeking for robust correlation (data not shown).

Study sample is composed of N = 510 healthy subjects (52% female, 14.4 + 0.4 y.0.) from the IMAGEN study’, with genetic data acquired on an lllumina QuadChip 660k. We selected 191 SNPs from
17 serotoninergic and dopaminergic genes from HugeNavigator! as in Heck et al.”? Only SNPs with MAF > 0.05, call rate > 0.95, in Hardy-Weinberg equilibrium at p > 0.0001, were retained for the
analysis (125 SNPs). We considered scores on the TCl Novelty Seeking (NS) scale, and neuroimaging data on a Stop-Signal Task (No-Go responding contrast, see 1090 MT-PM), as phenotypes.

The NS scale is composed of four well-correlated (with 0.194 < The GWAS view No SNPs survive Bonferron The four ROIs selected from sparse PLS were then submitted
rgp < 0.765, all p < 0.001) subscales (Excitability, Impulsivity, or BH correction. The “best” to another sparse PLS regression, together with SNPs (N = 389
Extraversion, and Disorderness), see below. 7] Novelty Seeking genes for NS scale score are: complete cases). The complete picture for associations unrav-
e e e 2 - D8H, DRDS, HTR2C, MAOA eled through sparse PLS regression is shown below:
1 T R 2 . o (uncorrected p-value below
33 ; L # P8 || %ot g 5 7 ga . . . - -* .. . e 5%).
T R N Sparse PLS regression of
_ 0 e e e T SNPs x NS traits yields SNPsxNS ROIsxNS SNPs < ROls
[ e S sl HTR3A, HTR6, and DRD4 as ° ° > |
" best associated to a linear
o . combination of the four S S S
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NS, gives two additional ROIs
Analysis strategy: o0 (with loadings > 0.25). Canonical correlations for the first component were assessed
, ~ under re-randomization (1000 permutations) for SNPsxNS
- Apply usual SNP-wise analysis vs. PLS on NS traits e ROl coordinates (MNI: 33 (48,4, 38), 34 traits (N = 443 c.c.) and SNPsxROlIs (N = 389 c.c.) and proved
. Select the ROIs that best correlate to NS traits Inthe case of PLS, NS sale scores were to be significant (p = 0.001 and p = 0.012, resp.), though in the
. Regress those ROIs onto the 17 genes Genden since GWAS were also adjusted latest case we may be over-optimistic due to prior selection of
ROIs from NS traits.
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