
1 See, e.g., one review or another on my
website.

2 Seth Brown, aka drbunsen. Unfor-
tunately, the blog post is no longer
available.

My (ideal) setup
September 2022

I have been tinkering my TUI for quite a bit of time actually, and I
believe I reached a close to ideal setup I could possibly expect from
all the tools I configured along the way.1 At some point, it’s time
to stop tinkering and rather optimize what we have at hand. It all
evolved over time, and it is somewhat still evolving, but at a safer
pace which I interpret as me finding an equilibrium in the tools I
need for my working habits. The core software I use the most are
Zsh, Tmux and Neovim. Someone on the internet2 coined them the
text triumvirate. Indeed, ”text streams are a valuable universal format
because they’re easy for human beings to read, write, and edit without
specialized tools”, according to Eric S. Raymond [2]. I spend a lot of
time dealing with text, in the form of manipulating input or output
data and writing hard coded handouts or short notes like this one.
Tmux helps me manage the multiple working directories and projects
I interact with, while Zsh gives me access to load of utilities that help
manipulating and piping text streams. And, well, Neovim let me read
and write most of what I consume every day when in front of my
computer. Above all, Neovim (or Emacs) is an advanced text editors
which gives you some extra power at little cost. Past the first times of
discovery, you start to get comfortable with the tooling

Our work is repetitive by nature. Whether we’re making the same small
change in several places or moving around between similar regions of
a document, we repeat many actions. Anything that can streamline a
repetitive workflow will save our time multifold. Vim is optimized for
repetition. Its efficiency stems from the way it tracks our most recent
actions. We can always replay the last change with a single keystroke.
Powerful as this sounds, it’s useless unless we learn to craft our actions
so that they perform a useful unit of work when replayed. Mastering
this concept is the key to becoming effective with Vim. Drew Neil [1]

In this note, I present various TUIs, especially those largely ca-
pable of replacing the default applications installed on, say, Linux
Ubuntu. Applications suggested in Table 1 also proved to work well
on OpenBSD and macOS. This list shows the essential software I run
every day, but it is far from being exhaustive of course. Also, many
terminals are available and your mileage may vary, depending on
whether you like having ligatures enabled in your terminal, or if
you like to have some kind of multiplexing capabilities. For instance,
Ubuntu ships with Gnome terminal as the default, which does not
support ligatures but allows to open different tab in the same window.
OpenBSD and OSX support different terminal applications by default.

MY (IDEAL) SETUP 2

3 Note that I keep local copies of those
projects under version control (Git) but I
never updated them.

If you are looking for a universal terminal, I suggest trying out Kitty,
Alacritty, or the good old Xterm with Unicode support.

Default Alternative
bash zsh
screen tmux
gedit (neo)vim
evince zathura
eog feh
firefox nyxt
thunderbird (neo)mutt
rhythmbox cmus
gfeeds newsboat

Table 1: Alternatives to common
applications on Linux distros (Ubuntu)

Sidenote: If you want to change default applications in Ubuntu,
you first need to query the relevant filetype of a given file, or you can
ask what default application is used for a given filetype. This can
be done using either xdg-mime query filetype or xdg-mime query

default application/pdf. Then, you can update the user database
with xdg-mime default org.pwmt.zathura.desktop application/pdf,
for instance. The desktop file are usually located in /usr/share/applications

or $HOME/.local/share/applications. Be sure to check the correct file-
type first; for instance, a Postscript file has filetype application/postscript,
not application/ps.

Interacting with the shell

My preferred shell is Zsh. I have been using it for years, and this
is usually the first tool I install on external server I am interacting
with. I could probably be happy with Bash, but it would mean a lot
more customizations than what I have here with Zsh. Fish is great
too, but now that I finally manage to get everything working in Zsh
like it works in Fish I think I prefer to stay with a POSIX-compliant
shell, if only for my daily job where I use to use a lot of shell-oriented
workflows. I don’t use any external framework for managing my
plugins, like OhMyZsh and the like. My current Zsh configuration
includes auto-suggestions and auto-pairing of matching delimiters,3

but I disabled syntax highlighting. The setup is simple:

source ˜/.local/share/zsh/zsh-suggest/zsh-autosuggestions.zsh

ZSH_AUTOSUGGEST_HIGHLIGHT_STYLE="fg=#d0d0d0"

ZSH_AUTOSUGGEST_STRATEGY=history

ZSH_AUTOSUGGEST_HISTORY_IGNORE="(git|ls|less|rm) *"

ZSH_AUTOSUGGEST_USE_ASYNC=1

source ˜/.local/share/zsh/zsh-autopair/autopair.zsh

autopair-init

MY (IDEAL) SETUP 3

I have a set of dedicated Zsh files for managing aliases, functions,
and the prompt, although in the later case I now rely on starship to
get an unified (and optimized) prompt across the machines and shell
I happen to interact with. In addition to starship, I use Fzf for many
things: fuzzy searching in the history, finding files in a given directory,
managing my BIBTEX entries, interacting with Tmux, or looking for
some commits in a Git repository. I use the following settings:

source /usr/share/doc/fzf/examples/key-bindings.zsh

source /usr/share/doc/fzf/examples/completion.zsh

export FZF_DEFAULT_COMMAND='rg --files --follow'

export FZF_CTRL_R_OPTS="--layout=reverse-list --height 100%"

export FZF_CTRL_T_OPTS="--layout=reverse-list \

--info=default --height 20% --preview='head {}' \

--preview-window right:50%"

export FZF_CTRL_T_COMMAND="$FZF_DEFAULT_COMMAND"

export FZF_DEFAULT_OPTS="--no-mouse --height 20% \

--layout=reverse --no-info --color=light \

--color=bg+:#2E3440,fg+:#ffffff,hl:#81a1c1, \

hl+:#88c0d0,marker:#5f87af,pointer:#81a1c1, \

prompt:#96522b"

Editing code, email and prose

All text-related stuff is managed with Neovim. I have been a hard
time Emacs user for years, but now I prefer the Vim approach to text
editing. I use the nightly build version of Neovim, which I update
every week via Ubuntu package manager system. I use packer to
manage my plugins, but it’s only because I’m to lazy to autoload
plugins for specific filetypes. In fact, packer’s lazy loading feature is
the only thing that makes me keep this plugin in my config. I came
to appreciate builtin features of Vim, then Neovim, and tend to favor
their use over more complex workflows, especially those involving
load of external plugins. I tend to favor all kind of minimalism these
days, and in the end I think I could probably live with less than 10
plugins. This is low standards compared to some of the settings I find
regularly when browsing GitHub.

The mappings I use are described on a separate page on my website.
Previously I was using the wonderful fzf plugin for fuzzy searching
in Vim, and now I use Telescope, which is a Neovim only thing. The
builtin LSP server in Neovim makes coding easier than before when
we have to install lot of plugins for each programming language.
However, I use very few of its capabilities: Python has no code ac-

https://github.com/wbthomason/packer.nvim
https://github.com/junegunn/fzf.vim
https://github.com/nvim-telescope/telescope.nvim

MY (IDEAL) SETUP 4

4 You really only need to call Emacs
from a shell script to process your
document.
5 which solves the problem of designing
good looking tables, at the price of extra
syntax in your Org file

tion or reliable refactoring tools, Scheme does not have a language
server (only Racket does), and I do not write that much Haskell code.
However, I appreciate the tight integration of Telescope and LSP
commands like go to definition or references, renaming, or (range)
formatting.

For prose I tend to favor Org files, although I have been using
Markdown for more than 10 years before that. I simply find Org
syntax more pleasant, and I often end up with the results I want, even
in case of nested lists or when an image is inserted right after an item
in a list, while with Markdown the result may vary (from two to four
spaces, usually). For a long time, Pandoc has been my exporter of
choice for Markdown files. I could also use a two-pass export (Org →
Md → PDF), but then I realized it is easier to manage everything from
within Org mode tools, and then using org-export. This assumes you
are not too picky with table design, though. Now, with a single key
press from within Neovim, I can export a buffer to a PDF handout
which pop up in Zathura right away, and I never had to revert to
Emacs to edit my Org files.4 Org syntax supports TEX expressions5,
which means I rarely need to write plain TEX documents nowadays.
When I do, I use the excellent vimtex plugin, which offers synctex
support for Zathura PDF viewer.

I’m not a GTD guy, and I store all my personal or work notes in
plain Org files in one or two dedicated folders on my hard drive.

Managing emails

I use Neomutt for all things related to email (private, work, and
mailing-list).

Media viewer

For PDF, I settled upon Zathura, mostly because of its synctex capa-
bilities (forward and backward synchronization with Neovim) when
working with TEX processing and its keyboard-driven features. It
is even possible to specify your own color scheme, and in case you
wonder documents rendered using a dark theme are still perfectly
readable (Figure 1).

References

[1] Drew Neil. Practical Vim: Edit Text at the Speed of Thought. 2nd ed.
The Pragmatic Bookshelf, 2015.

[2] Eric Steven Raymond. The Art of Unix Programming. 2003.

https://orgmode.org/manual/Exporting.html
https://github.com/lervag/vimtex

MY (IDEAL) SETUP 5

Figure 1: Neovim in Gnome terminal
(left) and Zathura viewer (right)

