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Penalized likelihood regression

This article was first published on www.aliquote.org (April, 2008).

Recently, I was reading some posts on Google groups, and I found an interesting issue on
stepwise selection for logistic regression which was raised on Medstats. Franck Harrell
provides extensive coverage of model selection in his most famous book Regression Mod-
eling Strategies (Springer, 2001). He also wrote several articles on this topic, and several
of them can be found on-line, e.g. Regression Modeling and Validation Strategies
(see also [5]).
The following article highlights the use of Penalized Maximum Likelihood Estimation to
predict binary outcomes: Moons KG, Donders AR, Steyerberg EW, Harrell FE. J. Clin.
Epidemiol. 2004, 57(12): 1262–70. Abstracta can be found on Medline and is reproduced
below:

“BACKGROUND AND OBJECTIVE: There is growing interest in developing pre-
diction models. The accuracy of such models when applied in new patient samples
is commonly lower than estimated from the development sample. This may be
because of differences between the samples and/or because the developed model
was overfitted (too optimistic). Various methods, including bootstrapping tech-
niques exist for afterwards shrinking the regression coefficients and the model’s
discrimination and calibration for overoptimism. Penalized maximum likelihood
estimation (PMLE) is a more rigorous method because adjustment for overfitting
is directly built into the model development, instead of relying on shrinkage after-
wards. PMLE has been described mainly in the statistical literature and is rarely
applied to empirical data. Using empirical data, we illustrate the use of PMLE to
develop a prediction model. METHODS: The accuracy of the final PMLE model
will be contrasted with the final models derived by ordinary stepwise logistic re-
gression without and with shrinkage afterwards. The potential advantages and
disadvantages of PMLE over the other two strategies are discussed. RESULTS:
PMLE leads to smaller prediction errors, provides for model reduction to a user-
defined degree, and may differently shrink each predictor for overoptimism without
sacrificing much discriminative accuracy of the model. CONCLUSION: PMLE is
an easily applicable and promising method to directly adjust clinical prediction
models for overoptimism.”

So, what is PMLE exactly?

First of all, let’s talk about standard MLE. The reader may recall that an ML estimate
is the value that maximizes the likelihhod function given the sample of observations. In

I cannot find the pdf version on the web. . .a
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the case of linear or binomial regression, any OLS estimate (intercept or slope) coincides
with the ML estimate. For the latter case, this results from the fact that estimating the
proportion of binary outcome (coded as 0/1) is equivalent to computing its arithmetic
mean. Usually, ML estimates are found by maximizing the log-likelihood (or minimizing
the likelihood, but working with the log-likelihood is often computationally easier). We
first compute the partial derivatives of the likelihood function, with respect to each of
the parameter of interest, and find those values that zero these expressions; checking the
sign of the second derivatives ensures that this is a a global optimum, and not a local
one. On the contrary, OLS estimates are found by solving a system of linear relations,
subject to minimizing the mean square error. It is more an algebric technique that can be
applied to any linear combination of predictors with identically distributed errors. How-
ever, more robust methods are available, such as quantile regression, resistant regression,
MM-estimator [2], etc. OLS and ML procedures are well documented in most classical
textbook, so I will not go further onto these topics.
Penalized MLE is another way to find the estimates of regression coefficients for the case of
categorical predictor(s), without fitting noise in the data (Harrell, p. 207). It shall not be
confused with Weighted MLE whereby each observation or case (and not the predictors)
is weighted depending on some available characteristics. Other widely used approaches
are shrinkage technique such as ridge regression, e.g. [6,7]. Following Harrell, one wish to
maximize the PMLE given by

log L− 1
2
λ

p∑
i=1

(siβi)2

where L denotes the usual likelihood function and λ is a penalty factor. The scale factors
s1, s2, . . . , si can be viewed as the shrinkage related factors per se. Indeed, one can assign
scale constant of zero for parameters for which no shrinkage is desired. Scaling by standard
deviation is a good choice when predictor are continuous and enter linearly in the model.
Otherwise, and in particular with dummy coding of predictor (in this case, SD is simply√

d(1− d), where d is the mean of the binary variable), it might lead to severe distorsion
of the shrinkage correction. Scale factors are not needed if we work with standardized
data, but we loose the possibility of interpreting the βs on the link scale.
Maximization of the above equation is usually done via Newton-Raphson algorithmb.
Other details are covered in Harrell (pp. 208–209), in particular how to compute the
corresponding degrees of freedom as well as the variance-covariance matrix and a modified
AIC. The following is a short snippet from Harrell (pp. 209–210) illustrating PLME
analysis with simulated data in R:

Newton-Raphson algorithm is a well-known technique used in numerical analysis when one wants to findb

the zero(s) of a function taking real values. Basically, the function f is linearized on some point x (most
often with the its tangent line) and the root of this linearization (i.e. the intercept between the tangent
line and the x-axis) is taken as the root of the function. This point is then used as the starting point for
a new approximation. Obvisously, we have to give a starting value or initial guess. Convergence will be
quicker if it isn’t too far away from the root of f(x). See also Press, W.P., Flannery, B.P., Teukolsky, S.A.,
and Vetterling, W.T. (1992). Numerical Recipes in C. Cambridge University Press (sections 9.4 and 9.6).

http://www.cran.r-project.org
http://en.wikipedia.org/wiki/Newton%27s_method
http://www.nrbook.com/a/bookcpdf/c9-4.pdf
http://www.nrbook.com/a/bookcpdf/c9-6.pdf
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library(Design)
set.seed(191)
x1 <- rnorm(100)
y <- x1 + rnorm(100)
pens <- df<- aic <- c(0,.07,.5,2,6,16)
par(mfrow=c(1,2))
for (penalize in 1:2) {

for (i in 1:length(pens)) {
f <- ols(y ~ rcs(x1,5),

penalty=list(simple=if (penalize==1) pens[i] else 0,
nonlinear=pens[i]))

plot(f, x1=seq(-2.5, 2.5, length=100), add=i>1)
df[i] <- f$stats[’d.f.’]
aic[i] <- f$stats[’Model L.R.’] - 2*df[i]

}
abline(a=0, b=1, lty=2, lwd=1)
print(rbind(df=df, aic=aic))

}

and the plots are shown in the next figure.

As can be seen, in the left panel, all parameters are shrinked by the same amount a:
when df get smaller (i.e. penalty factor gets larger), the regression fit gets flatter and
confidence band (dotted curves) become narrower. However, in the right panel, only
the cubic spline terms that are nonlinear in X1 are shrinked. Further, as the amount of
shrinkage increases (lower df), the fits become more linear and closer to the true regression
line (straight dotted line). The stepPlr package provides additional functions for PLME.
In particular, the step.plr function implements L2 penalized logistic regression along
with the stepwise variable selection procedure [13]. Hereafter, I reproduce some of the
example code found in the R on-line help.
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n <- 100
p <- 10
x <- matrix(rnorm(n*p), nrow=n)
y <- sample(c(0,1), n, replace=TRUE)
fit <- plr(x, y, lambda=1)

Now, let’s plot some graphics. First, all predictors appear to be uncorrelated with each
other. This was to be expected since the Xi are all random draws from a standard gaussian
distribution.

The final model is:

Y = −0.12434− 0.22440X1 + 0.03806X2 + 0.02807X3 + 0.10409X4

− 0.31475X5 + 0.03531X6 − 0.05032X7 + 0.06048X8

− 0.06450X9 + 0.04051X10

Null deviance is estimated to be 137.99 (99 df), while residual deviance is 133.43 (89.9
df). Of course, you will probably obtain different results since it depends on the state
of your random generator. If we were to select a more parcimonious variable subset, we
might use

step.plr(x,y)

The output indicates that X1, X4 and X9 × X1 have to be included in the final model
(Residual deviance now becomes 119.57 on 96 df).
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Why stepwise model selection isn’t a good idea?

There are basically three widely used techniques for model selection: forward selection,
backward elimination, and stepwise selection. The latter can be described in terms of the
two other approaches, in particular for the stopping rules:

• Uses both the forward selection and backward elimination criteria.
• Variable selection process terminates when all variables in the model meet the criterion

to stay and no variables outside the model meet the criteria to enter.
• Criterion for a variable to enter need not be the same as the criterion for the variable

to stay.
• Some advantage in using a more relaxed criterion for entry to force the selection process

to consider a larger number of subsets of variables.

Leaps and bounds is another algorithm that was proposed by [9]. It allows to find the
optimal subset of predictor variables without actually examining all the potential subsets.
Its application is limited, however, to subsets of no more than 30 to 50 variables.
So, why not to use stepwise selection? Franck Harrell (Chapter 4, pp. 56–60) provides
some clues to the problem of model selection. This ‘hot’ topic is also discussed in several
books on Regression, including [3] and [4], for example. When using a stepwise procedure
for variable selection, one must bear in mind that:

1. It yields R values that are biased toward higher values.
2. The ordinary F and χ statistics don’t follow their assumed distribution.
3. Standard errors of regression coefficient estimates are biased low and CI for effects and

predicted values are falsely narrow.
4. Regression coefficients are biased toward higher values, calling for shrinkage correction.
5. It yields too liberal <em>P</em>-values due to neglected multiple comparison prob-

lems.
6. It does not solve the problem of collinearity (correlation between some of the predic-

tors).

See also these posts compiled by R. Ulrich, and [8]. Some authors regard this approach
as releving data dredging. In short, stepwise selection, as well as backward and forward
procedures, are automated techniques that have to be avoided if one really wants to
explore a large set of variables in order to build a confirmatory model. Quoting Harrell
(p. 58): ‘If stepwise selection must be used, a global test of no regression should be made
before proceeding, simultaneously testing all candidate predictors and having degrees of
freedom equal to the number of candidate variables (plus any nonlinear or interaction
terms). If this global test is not significant, selection of individually significant predictors
is usually not warranted.’
However, when a serious background suggests that some of the variables should be present
in the model, stepwise selection could be of interest, though it doesn’t provide a ‘conser-
vative’ way to assess the contribution of a given variable to the model. We are generally
looking for a parcimonious model, including primary variables of interest and some other

http://www.pitt.edu/~wpilib/statfaq/regrfaq.html
http://en.wikipedia.org/wiki/Data_dredging
http://en.wikipedia.org/wiki/Data_dredging
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influential factors. In epidemiology, for example, sex, age or tobacco consumption are
mandatory variables when modeling some forms of cancer. It would be unbelievable not
to include them in a model! With this respect, backward and forward procedures aren’t
very recommended when there are plenty of variables since they don’t offer the choice
to specify a subset of variables of interest which have to be conserved during the whole
selection process.
As proposed by [10], Least Angle Regression [11] and the Lasso [7] techniques offer better
alternatives to classical automated selection procedures. Instead of stepwise variable
selection algorithm, using methods such as full-model fits or data-reduction ensure a better
approach to large-scale model assessment. In particular, the selection of less complex
models that are more in agreement with subject matter knowledge should be favored.
The Lasso technique is a penalized estimation technique in which the estimated regression
coefficients are constrained so that the sum of their scaled absolute values falls below
some constant κ chosen by cross-validation. Although computationally demanding, this
technique offers a way to constrain some regression coefficient to be exactly zero while
shrinking the remaining coefficients toward zero. There are several examples of its use in
[6], as well as in the R software (See the ElemStatLearn package).
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