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1 S-language

Problem set I

1. Write and test a command that creates absolute values; other than
abs().

2. Write and test a command that evaluates the standard error of the
mean associated with a vector of n values labeled x without using
var(x) where

standard error =

√∑
(xi − x̄)2

n(n− 1)
.

3. Write and test a set of commands that calculates the square root of T
using the relationship xi+1 = (xi + T/xi)/2.

4. Compare the S-function pnorm() to the approximation P (x) where

P (x) =
1 +

√
1− e−2x2/π

2

when x is between 0 and ∞.
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Find the maximum difference between these two functions and the
value at which the maximum difference occurs.

5. Pascal’s triangle is

row 1 1
row 2 1 1
row 3 1 2 1
row 4 1 3 3 1
row 5 1 4 6 4 1

...

Write and test an S-function thta generates the kth row. Verify thta
the rows sum to 2k.

6. The estimated standard deviation is

S =

√∑
(xi − x̄)2

n− 1
.

A correction for the bias of this estimate is

αn =
√

2
n

Γ(n/2)
Γ([n− 1]/2)

where Γ(x) represents a gamma function evaluated at x. Calculate αn
for n = 2, 3, 4, · · ·, 50.

Show that
αn =

3.5n− 3.62
3.5n− 1

is a better approximation.

7. Write and test S-commands that create the following two patterns of
numbers:

1234512345123451234512345
1111122222333334444455555

Write and test S-commands thta will generate this pattern in general;
that is, for any chosen integer.

8. Create an S-vector with 1000 values set to 1. Then add one to every
second value, then add one to every third value, then add one to every
fourth value, and so on 1000 times. Which values are odd and which
are even? Justify the observed pattern.
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9. Write and test an S-function that accepts two vectors of observations
x and y as input and returns the Spearman rank correlation (the cor-
relation coefficient calucalted using ranks of the observations).

Verify the S-code using cor.test(x, y, method=spearman).

10. A perfect shuffle of a deck of 52 playing cards occurs when the deck is
split perfectly into halves (26/26) and the cards are exactly alternated.
If the top card remains on the top after each perfect shuffle, how many
perfect outside shuffles are necessary to restore the original order? If
the top card becomes the second card on each shuffle, the shuffle is
called a perfect inside shuffle. If the deck is ordered before the first
shuffle, how many perfect inside shuffles are necessary to restore the
original order?

11. Generate a vector (denotes ybar) containing k = 20 mean values each
composed of n = 50 random observations from a normal distribution
with mean = 2 and standard deviation = 2.

Generate ybar using a “for-loop.”

Generate ybar without using a “for-loop.”

Increase k and n and note the difference in execution times.

12. Evaluate
f(x, y) =

sin(x)√
1 + cos2(y)

over the range −2π < x < 2π and −2π < y < 2π.

Construct and test S-code using and not using a “for-loop.” Note the
difference in execution times.

13. Construct a three-column array where column 1 = rnorm(100,2,2),
column 2 = rnorm(100,4,4), and column 3 = rnorm(100,0,1). Use
S-code to produce an array so that each column has exactly mean =
0 and exactly variance = 1.

Use the command scale(cbind(x1,x2,x3),center=T) which does
the same thing to verify your results.

Verify that cor(cbind(x1,x2,x3)) = var(scale(cbind(x1,x2,x3))).

14. An approximation for n! is

n! ≈
√

2nπ(n/e)n.
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Write an S-code program to show that the difference between this
approximation and n! increases with increasing n but the relative error
(i.e., (absolute difference)/n) decreases.

15. For the 100 observations in the following table, write an S-command
that produces a vector labeles test with 100 observations with the
same distribution of values (e.g., 1, 1, · · ·, 5, 5, 5, 5):

1 2 3 4 5
count 20 35 25 10 10

To check: table(test) will reproduce the above table.

16. In a random matching of two equivalent decks of k cards the proba-
bility Pm of exactly m matches is

Pm =
1
m!

{
1− 1 +

1
2!
− 1

3!
+

1
4!
− · · · ± 1

(n−m)!

}
where m = 0, 1, 2, 3, · · ·, n− 1.

Write an S-code function to calculate Pm for a given value of m < n.

Show that for m > 9, Pm ≈ 1
m!e
−1.

2 Descriptive techniques

Problem set II

1. Plot the function f(x) = x log(x) for 0 < x < 1. Use the arrows()
S-command to point out the minimum of f(x) and the value of x at
which the minimum occurs (see ?arrows).

2. Plot four distributions using the density() function on the same axes
based on n = 200 observations sampled at random from each of four
normal distributions with the same variance (σ = 2) but with mean
values = µi = {2, 4, 6, 8}.
Also plot four distributions using the density() function on the same
axes based on n = 200 observations sampled at random from each
of four normal distributions with the same mean (µ = 2) but with
standard deviations = σi = {2, 2.5, 3, 3.5}.
Repeat the two plots with n increased to n = 2000.
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3. Suppose a needle with length l is tossed on a grid with horizontal lines
spaced d units apart. Plot the 11 horizontal lines between 0 and 1,
d = 0.1 units apart. Then, “drop” n = 50 random needles on the grid
with l = 0.05.

This plot is a display of Buffon’s classic problem where he calculated
the probability that a needle tossed on such a grid intersects a hori-
zontal line (probability of an intersection = l/[πd]).

4. Plot the bivariate normal density with persp() and contour() where
µx = 0, σx = 1, µy = 2, σy = 3 for ρxy = {0.1, 0.5, 0.9} (see chapter
for the mathematical expression of the density function).

5. The S-commands x <- runif(n) and y <- runif(n) generate a set
of n random points on the unit square. Divide the x-axis into 10 in-
tervals and calculate the median for values x and y in each interval.
Generate three plots with n = 100, 1000 and 10,000 random points.
Connect the median values to form a median trace (showing, if any,
trends in the generated data). Plot the points and the smoothed me-
dian traces.

6. Generate a random sample from a normal distribution of n = 10, 000
values. Test the boxplot definition, of an “outlier” which shoud pro-
duce about 0.7% or 70 generated values as “outliers”.

7. The first smoothed observation is a combination of the next two smoothed
observations. Justify1 that new − y1 = 2y2 − y3.

8. Plot the function
f(x, y) =

sin(x)√
1 + cos2(y)

over the range −2π < x < 2π and −2π < y < 2π using persp() and
contour().

9. Consider the data describing protastic cancer by age and year of death
(rates/100,000):

1Solve theoretically and not with a computer program.
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age 1930 1935 1940 1945 1950 1955
45–49 3.5 4.9 6.6 7.2 4.7 4.7
50–54 5.4 11.4 16.0 15.7 23.3 16.3
55–59 18.8 22.4 32.1 41.4 39.0 44.4
60–64 24.0 45.9 50.2 60.4 77.7 84.2
65–69 35.1 60.2 72.3 74.1 74.1 141.1
70–74 60.7 66.5 90.1 126.0 148.0 168.5
75–79 47.5 90.6 151.4 130.0 219.2 234.4
80+ 56.7 124.5 152.1 155.6 299.1 328.6

Separate each rate into an additive and a residual component using
sweep().

Assume the effects on the disease rate from year and age are additive.
Calculate and inspect the residual pattern (e.g., plot the residuals).

Plot the additive “data” (each year = a line) and the observed rates
on the same set of axes.

Repeat the same analysis, assuming the year and age influences have
multiplicative influences on the rate of prostatic cancer.

3 Simulation: Random Values

Problem set III

1. Use the Kolmogorov test to assess the “randomness” of the values
generated by a = 210 + 1, c = 0, and m = 220 (ran1 in the chapter).

2. Chuck-a-luck is a game where one bets on the numbers 1, 2, 3, 4, 5,
and 6. Three dice are rolled and if a player’s number appears 1, 2, or
3 times, the pay-off is respectively 1 or 2 or 3 times the origina bet
(plus the player’s bet). Simulate this game and estimate the player’s
expected gain or loss (ans: 7.9% loss).

3. If a chord is selected at random from a circle with a set radius, what
proportion of lengths will be smaller than the radius of the circle?
Write and test a simulation program to estimate the answer2 to this
question (ans: 1/3).

2Note from the author : Answer is not unique: One should also probably found 1/4 or
1/5 depending on how one defines what is meant by “drawing a chord at random”.
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4. Which event is more likely: (i) k = 1 or more sixes in 6 tosses of a die
or (ii) k = 2 or more sixes in 12 tosses of a die or (iii) k = 3 or more
sixes in 18 tosses of a die?

Write and test an S-program to simulate dice and answer the question:
what is the probability of k or more sixes in 6k tosses of a die for se-
lected values of k (ans: k = 1, 2, 3, and 4, then p = 0.665, 0.619, 0.597,
and 0.584). Note: this problem is attributed to a question posed by
Isaac Newton.

5. Robust linear regression: to achieve “robust” estimates of the inter-
cept and slope of a straight line, the data are divided into three groups
based on the ordered values of the independent variable x. Each group
contains approximately one-third of the data (e.g., if the total num-
ber of observations is n = 3k, then the leftmost group has k mem-
bers, the middle group has k members, and the rightmost group has
k members—if the number of observations is not divisible evenly by
three, then the observations are allocated as closely as possible to the
ideal of n/3). Using these “thirds,” a representative point is con-
structed based on the median of the x-values and the median of the
y-values calculated separately from within each group. The pairs of
median values

(xL, yL), (xM , yM ), and (xR, yR)

become the representative values of the left, middle, and right groups
respectively.

Estimates of the slope (b∗) and intercept (a∗) are then

b̂∗ =
yR − yL
xR − xL

and â∗ =
1
3

(yL + yM + yR)− b̂∗ 1
3

(yL + yM + yR).

Since the estimate of the slope depends only on the median values from
the left and right groups, it is almost certainly unaffected by extreme
values, called a robust estimate.

Simulate a set of “data” that conforms to the assumptions of simple
linear regression—the dependent variable (y) is linearly related to the
independent variable (x) and is sampled independently from a normal
distribution with constant variance. Specifically,

yj = a+ bxj + ej

where ej is one of series of independent and normally distributed val-
ues. Use 100 “data” sets to simulate the distribution of “robust”
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estimator of the slope denoted b̂∗. Also, compute 100 estimates of the
slope b with lsfit(), denoted b̂.

Compare the variances of the two estimated values b̂∗ and b̂.

6. For the positive triangular distribution, write and test four S-functions
that produce the cumulative probabilities, quantiles, heights, and a
random sample (e.g., pptri(), qptri(), dptri(), and rptri() func-
tions).

Show both theoretically and graphically that x = max(u1, u2) has a
positive triangular distribution when u1 and u2 are two independent
values from a uniform distribution (0, 1).

7. Derive3 the cumulative distribution and density function for a negative
triangular distribution on the interval 0 to 1.

8. For the negative triangular distribution, write and test four S-functions
that produce the cumulative probabilities, quantiles, heights, and a
random sample (e.g., pntri(), qntri(), dntri(), and rntri() func-
tions).

Show both theoretically and graphically that x = min(u1, u2) has a
positive triangular distribution when u1 and u2 are two independent
values from a uniform distribution (0, 1).

9. A left truncated standard normal distribution is given by the expres-
sion

f(z) =
1√
2π
e−0.5z2

1− P
for z > z0

where P = P (Z < z0).

Simulate a random sample of n = 1000 values from this distribution
when z0 = −1 using two different methods.

10. Using S-code and Butler’s method create an S-function that produces
n random values from a chi-square distribution with df degrees of
freedom. Compare the results to using rchisq(n,df).

11. Demonstrate that for n > 100 and p < 0.05, the binomial and Poisson
distributions produce similar probabilities.

3Solve theoretically and not with a computer program.
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12. Demonstrate using S-functions such as qqnorm() that the Box-Muller
transformation gives two independent standard normal variates from
two independent and uniformally distributed random variables.

13. Plot a square with a circle inscribed within the boundaries. Generate
random pairs (x, y) and determine whether these values are in the
circle or not. Use the result to estimate π = 3.1416.

14. Demonstrate with an S-simulation program that the expected mean
values resulting from sampling the same population with and without
replacement are equal. Which sampling has the smallest variance?

15. Create and test an S-function that produces n random values from a
Poisson distribution using the inverse transformation method for given
value of λ. Compare the results to the values generated with rpois().

16. The test-statistic X2 = (n − 1)S2
x/x̄ has an approximate chi-square

distribution with n − 1 degrees of freedom when the n values xi are
sampled from a Poisson distribution. Use a simulation program to
verify that X2 has an approximate chi-square distribution for n = 100
and λ = 1.0. Use this fact to test formally the fit of the Rutherford-
Geiger data (Chapter 3) to a Poisson distribution.

4 General Linear Models

Problem set IV

1. A measure of influence on the estimated value ŷi associated with the
ith independent variable xi can be defined as b̂ − b̂(i) where b̂ is esti-
mated from all n observations and b̂(i) is estimated from the same data
set but with the ith observation removed. Compute all such values for
the diastolic blood pressure data (Table 4.1) and determine the five
most influential points. Locate the five points on a plot of the data.

2. Show4 that if the coefficients ai maximize the multivariate distance
M2, then the coefficients bai + c also maximize M2 where b and c are
constants.

3. The goodness-of-fit S-code for the logistic model in the chapter re-
quires the number of observations to be evenly divisible by 10. Write

4Solve theoretically and not with a computer program.
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and test an S-program for the same goodness-of-fit test but make no
assumptions about the total number of observations used in the logistic
regression analysis.

4. The table showing case/control status and coeffe consumption (Ta-
ble 4.7) is a summary of n = 1010 individuals where the frequencies
in the table are the counts of observations with the identical values of
the dependent and independent variables. For example, there are nine
records (one for each person) where the outcome is a case who reports
no coffee consumption (x1 = 0) and is a male participant (x2 = 1)—
first cell in the summary table.

Using Table 4.7 reconstruct the data so that tehre are 1010 individuals
records where each record contains 0 or 1 for case/control status as
well as the corresponding values of the independent variables (x1 and
x2).

Use these n = 1010 records and glm() and conduct a logistic regression
analysis showing that the results are identical to the ones in the chapter
where the analysis is performed directly on the tabular data using the
cell frequencies as weights.

5. Consider the following data where birth weight and maternal age are
recorded for three groups based on smoking exposure status:

non-smoker quitters smokers
bwt age bwt age bwt age

1 9.1 35 1 7.2 32 1 6.7 24
2 8.9 29 2 7.7 30 2 6.5 24
3 8.5 34 3 6.8 26 3 7.2 28
4 7.4 32 4 7.0 33 4 6.5 26
5 7.5 28 5 7.4 28 5 6.5 26
6 7.3 28 6 6.2 29 6 7.1 26

Using S-tools conduct a separate simple linear regression analysis for
each smoking exposure group.

Use the same data and the model y = a+ b1x+ b2g1 + b3g2 + b4g1x+
b5g2x to conduct a linear regression analysis using all 18 observations
simultaneously where y = birth weight (dependent variable) and x
= age (independent variable). The design variable g is defined as
g1 = g2 = 0 for non-smokers, g1 = 0, g2 = 1 for quitters and g1 = 1,
g2 = 0 for smokers.
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Demonstrate these two approaches are identical.

Formally, test the influence of the three-level smoking exposure cate-
gorical variable on birth weight.

6. The following data are deaths from lung cancer and person-years at data incl. in
oakRNL.txtrisk, classified by age and exposure to radiation for workers at the Oak

Ridge National Laboratory.

age mSv deaths p-years age mSv deaths p-years age mSv deaths p-years
1 1 0 29901 2 3 2 2423 3 5 0 476
2 1 1 6251 3 3 1 2281 4 5 0 387
3 1 4 5251 4 3 2 1918 5 5 0 225
4 1 3 4126 5 3 0 1322 6 5 1 164
5 1 3 2778 6 3 2 723 7 5 0 150
6 1 1 1607 7 3 3 538 1 6 0 779
7 1 3 1358 1 4 0 2341 2 6 0 296
1 2 1 71382 2 4 0 972 3 6 0 282
2 2 5 16705 3 4 1 958 4 6 1 251
3 2 4 13752 4 4 1 816 5 6 0 193
4 2 10 10439 5 4 0 578 6 6 0 125
5 2 11 7131 6 4 2 375 7 6 0 69
6 2 16 4133 7 4 3 303 1 7 0 520
7 2 11 3814 1 5 0 1363 2 7 0 188
1 3 0 6523 2 5 0 478 3 7 0 217
4 7 0 184 5 7 1 109 6 7 0 60
7 7 1 23 1 8 0 2104 2 8 0 1027
3 8 1 1029 4 8 3 827 5 8 1 555
6 8 2 297 7 8 2 153

Recode age categories 1, 2, 3, 4, 5, 6, 7 into ages 45, 47.5, 52.5, 57.5,
62.5, 67.5, and 70 years. Recode exposure categories 1, 2, 3, 4, 5, 6, 7,
8 into exposures 0, 15, 30, 50, 70, 90, 110, and 120 mSv (milliseiverts).

Evaluate the exposure response in these data using a Poisson regression
approach.

When the open-ended (last) interval coded at 120 mSv is recoded to
160 mSv, assess the impact on the exposure/risk relationship using a
Poisson regression analysis.

Plot the impact on the dose-response relationship varying the defini-
tions of the coded value for the last exposure group (e.g., 120, 130,
140, · · ·, 220).
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7. Generate a sample of n = 200 random observations that are described
by the logistic model

pi =
1

1 + e−(a+bxi)

where a and b are such that or = 3.0.

Using glm() and the simulated data, estimate the odds ratio.

5 Estimation

Problem set V

1. The state fish and game service requires salmon catches to be reported
from any boat catching one or more fish. The boats that do not
catch fish, do not report. The data are, therefore, truncated since the
number of boats failing to catch fish are not recorded. An example of
such data is

number of fish 1 2 3 4 5 6
boats 34 25 12 5 1 0

Assume that the number of salmon caught per boat are described by
a Poisson distribution where

f(xi|λ) =
e−λλxi/xi!

1− e−λ
i = 1, 2, 3, · · ·.

The symbol xi represents the number of fish caught per boat. Use the
S-function ms() to find the maximum likelihood estimate of λ.

Using the scoring technique to estimate parameters, find the maximum
likelihood estimate of λ and an estimate of its variance.

Use the uniroot() S-function to find the maximum likelihood estimate
of λ.

2. Consider the situation where the number of observations below c0 is
known but the actual values of the observations are not known (i.e.,
the distribution is left censored at c0). Also the number of observations
above c′0 is known but the actual values of the observations are not
known (i.e., the distribution is also right censored at c′0). Further as-
sume that the sampled distribution is normally distributed with mean
µ and standard deviation σ. Write and test an S-code program to
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estimate µ and σ for this doubly censored normal distribution from
n observations where n0 are left censored, n′0 are right censored and
n− n0 − n′0 are measured values.

3. Consider the following model constructed to estimate the proportion
of dizygotic twins where

probability of a like-sex twin pair = P(like-sex twin) = M +D/2 and
probability of an unlike-sex twin pairs = P(unlike-sex twin) = D/2

where D = 1 −M is the proportion of dizygotic (fraternal twins). A
specific number of pairs of like-sex twins = 67 and unlike-sex twins =
42 are observed.

Find5 the maximum likelihood estimate of D and its variance in closed
form.

Use an S-code program to estimate D and its variance using scoring
techniques.

Use a bootstrap procedure to estimate D and its variance.

4. A measure of skewness is

M̂ =
∑

(xi − x̄)3

n

where M = 0 identifies a symmetric distribution using a sample of n
observations. For the data {2, 5, 8, 2, 5, 9, 1, 4, 30} estimate M and its
standard error using a boostrap procedure (i.e., find M̂[·] and ŝe(M̂[·])
estimates).

Find the same estimates using the jacknife procedure.

Estimate M and its standard error using n = 100 values sampled from
a standard normal distribution using both estimation techniques.

5. Consider the following 15 observations:

0.28,−1.21, 0.60, 0.14, 0.51, 0.19,−0.27, 0.45, 0.29, 0.40, 0.04, 0.60, 1.11, 0.90.

Use a bootstrap strategy to assess the likelihood this sample arose
from a population with a mean value of 0 (µ0 = 0?).

6. a sample of data yields the following 2× 2 table:
5Solve theoretically and not with a computer program.
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disease no disease total
exposed a = 200 b = 120 320

unexposed c = 80 d = 120 200
total 280 240 520

The odds ratio measure of association between disease and exposure
is estimated by ôr = ad/bc. Construct and test an S-program to find
the bootstrap estimate of the bias associated with this estimate. The
logarithm of the estimated odds ratio (log[ôr]) is another measure of
association. Use an S-program to estimate of the bias associated with
this measure of association.

7. For the data

x = 5, 10, 15, 20, 25, 30, 35, 40, 45 and
y = 0.08, 0.12, 0.22, 0.21, 0.27, 0.56, 0.70, 0.71, 0.84

use the model yi = [1 + e−(a+bxi)]−1 and nls()-function to estimate a
and b. Hint: use initial value a0 = −3 and b0 = 0.1.

Apply a linearizing transformation to y and again estimate the param-
eters a and b usng ordinary least squares estimation.

8. Use a boostrap procedure to estimate θ, its standard error, and the
bias for

θ̂ =
1
n

∑
(xi − x̄)2

where n = 15 and x = {12, 13, 23, 31, 41, 22, 44, 37, 14, 18, 24, 36, 51, 11,
32}.
Use a boostrap procedure to estimate θ, its standard error, and the
bias from a sample of n = 100 random values selected from a standard
distribution.

9. For the two sets of n = 15 observations

x = {1, 3, 2, 6, 8, 3, 8, 3, 9, 10, 15, 12, 18, 5, 2}

and

y = {10, 14, 15, 22, 28, 21, 14, 15, 12, 18, 33, 37, 33, 11, 12}

write and test and S-program to assess the conjecture that x and y are
samples of unrelated variables (correlation = 0) using a randomization
strategy.
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10. A simple Mendelian genetic system is represented by the following
model:

AA-homozygote frequency: p2

Aa-heterozygote frequency: 2pq
aa-homozygote frequency: q2

where p represents the frequency of the A-gene and q = 1−p represents
the frequency of the a-gene.

Find6 the maximum likelihood estimate of p and its variance when n1,
n2, and n3 represent the respective observed counts of AA, Aa, and
aa genotypes where

log(L) = n1 log(p2) + n2 log(2pq) + n3 log(q2).

If n1 = 250, n2 = 441, and n3 = 314, find the maximum likelihood
estimate of p using S-tools to verify the “closed-form” estimate and
variance.

If the laboratory determination of the homozygotes is subject to mis-
classification, the log-likelihood function is then

log(L) = n1 log(p2 + e) + n2 log(2pq) + n3 log(q2 − e)

where e represents the proportion misclassified homozygotic types.

If n1 = 250, n2 = 441, and n3 = 314, find the maximum likelihood es-
timate of p and e using S-tools. Also estimate the variance/covariance
array for the estimates of p and e.

11. Generate two sets of n = 100 random variables where x and y have
independent standard normal distributions.

Use bootstrap tools to estimate the correlation between x and 2x +
y (i.e., correlation(x,2x + y)). Also estimate the variance and bias
associated with this estimate. Plot the histogram and the estimated
density function of the estimated correlation coefficient.

6 Analysis of Tabular Data

Problem set VI
6Solve theoretically and not with a computer program.

15



1. For the data in the following table, work out the estimated values of
â, b̂1, b̂2, and b̂3 for the saturated model algebraically:

ai bi fij Fi data
0 0 f00 F1 23
1 0 f10 F2 12
0 1 f01 F3 45
1 1 f11 F4 122

Verify the results using an S-program.

2. If n and p are parameters of a binomial distribution, then

z0 =
x− np√
np(1− p)

and z1
x− np± 0.5√
np(1− p)

provide approximate binomial probabilities (i.e., pnorm ≈ pbinom).
Compare the maximum difference between the exact binomial and
normal approximated probabilities for n = 10, p = 0.5; n = 20, p =
0.2; n = 50, p = 0.1; n = 100, p = 0.05.

3. Consider the 2× 4 table:

X = 0 X = 1 X = 2 X = 3 total
Y = 0 1 7 15 40 63
Y = 1 4 19 34 42 99
total 5 26 49 82 162

Compute Sxx, Syy and Sxy.

Calculate the chi-square statistics reflecting the total, linear, and non-
linear influences. Demonstrate that the correlation between X and Y
based on n = 162 pairs (X,Y ), called the biserial correlation coeffi-
cient, is directly related to the chi-square statistic reflecting the linear
association or

rXY =

√
linear chi square statistic

n− 1
.

4. Show7 algebraically that or1/or2 = eb̂7 when a saturated loglinear
model is applied to a 2 × 2 × 2 table where or1 is the odds ratio
calculated from one 2 by 2 subtable and or2 is the odds ratio calculated
from the other subtable.

7Solve theoretically and not with a computer program.
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5. An estimate of the variance of Yule’s measure of association Y is

variance(Y ) =
1
4

(1− Y 2)2
[

1
F1

+
1
F2

+
1
F3

+
1
F4

]
.

Create an S-function to calculate Y , the variance of Y and to construct
an approximate 95% confidence interval for the expected value of Y .
Show that Yule’s Y is equivalent to the odds ratio measure ôr in a 2
by 2 table.

6. Demonstrate that the expected values calculated under the hypothesis
of statistical independence (usual chi-square expected values—Chapter
1 example) are essentially the same as the estimates of the cell frequen-
cies based on a loglinear additive model using the following data:

b1 b2 b3 b4
a1 12 8 22 4
a2 5 3 11 2
a3 26 17 44 10
a4 53 38 82 18
a5 108 75 167 44

7. Consider the following 2× 2× 2 table:

x1 x2 x3 Fi count
1 1 0 F1 F̂1 = 11 + e

1 0 0 F2 F̂2 = 8− e
0 1 0 F3 F̂3 = 12− e
0 0 0 F4 F̂4 = 37 + e

1 1 1 F5 F̂5 = 22− e
1 0 1 F6 F̂6 = 5 + e

0 1 1 F7 F̂7 = 3 + e

0 0 1 F8 F̂8 = 7− e

Find the value e such that no interaction exists (i.e., ôr1 = ôr2). Dis-
play the “data” (F̂i) and show that the odds ratios measuring the
association between any two variables at both levels of the third vari-
able are the same. Use a loglinear model applied to the created “data”
(F̂i = Fi ± e value) to show that the x1*x2*x3-term is zero (exact ho-
mogeneity).
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7 Analysis of Variance and Some Othe S-Functions

Problem set VI

1. Use the cholesterol and behavior type data (Table 1.5) to show that a
two-sample t-test, a simple linear regression analysis, and an analysis
of variance give identical results. That is, all three approaches produce
the same significance probability for comparing levels of cholesterol
between behavior type A and B.

2. Use the glm() S-function to reproduce the results found in the chap-
ter using the aov() S-command for the two-way table of lead level
determination data (Table 7.2).

3. Construct and test an S-program to execute a Kruskal-Wallis rank
test for independent samples. Compare the results with the S-function
kruskal.test() for a set of simulated data with no identical (tied)
values.
Construct and test an S-program to execute a Wilcoxon signed rank
test for a set of matched pairs data. Compare the results with the S-
function wilcox.test() for a set of simulated data with no identical
(tied) values.

4. Conduct a principal component analysis where x1 = {1, 2, 3, 4, 5, 6, 7}
and x2 = {7, 6, 5, 4, 3, 2, 1}. Calculate the variance of x1, the variance
of x2, the variance of the first principal component, and the variance
of the second principal component. Why are these variances the same?

5. Using the turtle data (Table 4.4) calculate the first two principal com-
ponents. To identify differences by gender (clustering), plot the 48
values of each principal component (one against the other).

6. Use the following data to show that a canonical correlation and the
multiple correlation coefficient are the same when one group consists
of a single variable (y) and the other group (x) has k = 2 variables
(i.e., compare results from cancor() with lm() S-functions).
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y x1 x2

1. 4.8 1 0.2
2. 14.1 2 0.6
3. 10.7 3 0.2
4. 18.3 4 0.8
5. 12.7 5 0.2
6. 17.2 6 1.9
7. 16.0 7 1.3
8. 22.0 8 1.6
9. 22.0 9 1.7
10. 23.6 10 1.1

7. Using the weight gain matched pair data (Table 7.3), assess the associ-
ation between maternal weight gain and low birth weight ignoring the
paired structure (as if the two infants represent samples from separate
and unrelated populations). In other words, does the paired pattern
of the data collection improve the efficiency of the analysis or not?

8. Write and test an S-program to execute a ranomization test for matched
pair data. Conduct a matched pair randomization test using the paired
data in Table 7.3. Compare the results to the tests used in the chapter
to analyze the association between birth weight and maternal weight
gain matched for pregnancy weight.

9. A total of N = 11 matched sets of data are collected (one case and two
controls). For each infant with a birth defect (case) born in a rural
area in France, two infants (control) were selected who were born at
essentially the same time, in the same village and were the same sex.
The matched data consist of the distances to electromagnetic radiation
exposure (risk factor—measured in meters).

malformation 1150 100 2000 350 400 2700 1200 1800 10 250 350
control 1 300 100 2150 1350 800 1250 450 400 900 1950 1050
control 2 750 650 4050 450 700 2850 50 2300 150 300 1000

Using these 1:2 matched sets assess the association between electro-
magnetic radiation and birth defects (does the distances among cases
differ from distances among controls?).
Ignoring the matched data collection design, again evaluate the asso-
ciation between electromagnetic radiation and birth defects. Does the
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matched pattern of the data collection improve the efficiency of the
analysis?

10. Simulate a data set of n = 100 pairs of matched observations.
Demonstrate that the results using the binomial test (without a cor-
rection factor) and the Friedman test are identical.
Simulate a data set of n1 = 100 and n2 = 100 observations from
two independent populations. Demonstrate that the results using the
Wilcoxon two-sample test (pairs=F) and the Kruskal-Wallis tests are
identical.

8 Rates, Life Tables, and Survival

Problem set VIII

1. Show8 the equivalence of the three expressions:

person-years = δxPx+δx + 1
2δxDx,

person-years = δxPx − 1
2δxDx,

person-years = 1
2δx(Px+δx + Px).

Show9 that for an exponential survival model

S(T > t2 | T > t1) = e−λ(t2−t1).

Show10 that when λ1(t)/λ2(t) = c, then S1(t) = [S2(t)]c.

2. If the survival times from one group are {7.5, 12, 18, 33+, 55.5, 61.5}
and for another group are {34.5, 60, 64.5, 76.5+, 93}, show that the
log-rank test (i.e., surv.diff() function) gives essentially the same
results as the proportional hazards model (i.e., coxreg() function).
The “+” indicates a censored survival time.

3. If d observations are complete (not censored) in a sample of n distinct
survival times from exponentially distributed data, the likelihood func-
tion is

L =
∏
i

λe−λti ×
∏
j

λe−λt
′
j i = 1, 2, 3, . . . , d and j = 1, 2, 3, . . . , n− d

8Solve theoretically and not with a computer program.
9Solve theoretically and not with a computer program.

10Solve theoretically and not with a computer program.
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where ti represents complete observations and t′j represents censored
observations. Find the maximum likelihood estimate11 of λ. Ver-
ify this estimator using the survival data from problem 2 and the
S-function ms().

4. If the survival function is S(t) = 1− t/b where 0 ≤ t ≤ b = constant,
find the hazard funciton λ(t) and the cumulative hazard function H(t).
Plot these three curves on a single page. Derive an expression for the
average rate (Rt = deaths/person-years). Show12 that Rt ≈ λ(t) for
small time intervals.

5. Consider the n = 11 complete survival time t = {1, 4, 6, 8, 2, 12, 24, 23, 25, 27, 31}.
Use an S-program to demonstrate that the Kaplan-Meier estimated
mean survival time is the same as the usual mean value t̄ =

∑
ti/n

and the variance is (n− 1)variance(t)/n2.
Show 13 algebrically that for complete survival data

t̄ =
1
n

∑
ti =

∑
Pi−1(ti − ti−1)

where i = 1, 2, 3, . . . , n.

11Solve theoretically and not with a computer program.
12Solve theoretically and not with a computer program.
13Solve theoretically and not with a computer program.
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