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Introduction

This document has been conceived as a supplemental reference material to accompany
the excellent book of Douglas C. Montgomery, Design and Analysis of Experiments

(hereafter abbreviated as DAE). Now published in its 6th edition, this book covers
numerous techniques used in the design and analysis of experiments. This includes:
Classical comparative experiments (two groups of observations, independant or not), the
natural extension to the case of k means to be compared (one-way ANOVA), various ways
of blocking (randomized blocks, latin squares and derived), the factorial– in particular
the 2k ones –and fractional designs, the fitting of regression models and response surface
methodology, a review of techniques for robust parameter estimation, and the various
derivation of standard design with fixed effects (random factor, nested and split-plot
designs).

Motivation for writting such a computer oriented document was initially started when
I was reading the document elaborated by Laura Thompson to accompany Agresti’s fa-
mous book, Categorical Data Analysis1. Indeed, I found that this really was a great idea
as it brings to the other side of the statistian’s activity, that of computing. This docu-
ment is somewhat different of splusdiscrete since I don’t pretend to be as exhaustive
as she is in her own manuscript.

While this textbook contains the same material as the original book written by Mont-
gomery, it is obviously not meant to be a partial electronic copy, nor to be a complete
replacement of the original book. Rather, I put some emphasis on modern computer
methods used to analyse data. Briefly, each chapter of this textbook is organized as fol-
low: first, I give a short summary of the main concepts presented by Montgomery; then
I try to illustrate some of the most important (to my opinion!) ones with R. Exemples
used by Montgomery are completely re-analysed using R. However, I do not answer to
the proposed exercices that can be found at the end of each chapter of DAE. I left them
to the interested reader, giving occasionnally some advice on “R way” to do the intended
analysis.

About R

Montgomery mainly uses non-free software to analyse the dataset presented in each
chapter. Though these dedicated softwares have proved to be very good packages for
statistical analysis, their cost restrict their use to people working in laboratory where
specific credits are devoted to such investment. Now, it seems that the avalailability
of open-source software, like R, offers an elegant alternative to such solutions (often
inaccessible to students).

R has been developed based on the S programming language and S-PLUS software,
although it is not a free completely rewritten clone of S-PLUS. In fact, there are several

1A revised version of her textbook can be found here: https://home.comcast.net/ lthomp-
son221/Splusdiscrete2.pdf.

i
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differences between the two, and the interested reader can refer to the following adress
for a deeper understanding of the way R has been built: www.

R can be freely downloaded on CRAN website (www.cran.r-project.org), and many
documentation and tutorials can be found at the same address. What makes R a better
choice to closed software like the ones Montgomery uses in his book is that the source
code of all the statistical built-in routines is available and can be studied separately. In
addition, users can add their own function to suit their needs for a particular analysis,
or for batching several analysis process at once.

Exemple Scripts

All the analyses done by Montgomery in his book are replicated here using R, version
2.7, on Mac OS X though they were initiated with R 2.4 running on a Linux plateform.
The source code for all the exemples is available at the following address:

www.aliquote.org/articles/stat/dae/

Datasets used in this textbook can also be found on this webpage. R scripts should
run without any problem with any version of R ≥ 2.0. However, in case you encounter
any problem, please send me an email (christophe.lalanne@gmx.net) with some detailed
information on the bug found. I don’t use Sweave to process this document, because at
the time of the first writing of this textbook I felt more comfortable without it; further, as
there aren’t any simulated data, nor too strong packages dependency, a simple verbatim
environment should be sufficient for most of what I need. So all the included code is
static, except for some pieces of code in Chapter 2, and compilation relies on dvips +
ps2pdf only. Furthermore, I haven’t splitted the tex source into distinct chapters, so
there is a “huge” source file that can be downloaded from there if anyone is interested
in getting the main tex file : www.aliquote.org/articles/stat/dae/dae.tex.

ii

http://www.cran.r-project.org
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Chapter 1

Introduction

The 6th edition of Montgomery’s book, Design and Analysis of Experiments, has many
more to do with the various kind of experimental setups commonly used in biomedical
research or industrial engineering, and how to reach significant conclusions from the
observed results. This is an art and it is called the Design of Experiment (doe). The
approach taken along the textbook differs from most of the related books in that it
provides both a deep understanding of the underlying statistical theory and covers a
broad range of experimental setups, e.g. balanced incomplete block design, split-plot
design, or response surface. As all these doe are rarely presented altogether in an
unified statistical framework, this textbook provides valuable information about their
common anchoring in the basic ANOVA Model.

Quoting Wiley’s website comments,

Douglas Montgomery arms readers with the most effective approach for learn-
ing how to design, conduct, and analyze experiments that optimize perfor-
mance in products and processes. He shows how to use statistically designed
experiments to obtain information for characterization and optimization of
systems, improve manufacturing processes, and design and develop new pro-
cesses and products. You will also learn how to evaluate material alternatives
in product design, improve the field performance, reliability, and manufactur-
ing aspects of products, and conduct experiments effectively and efficiently.

Modern computer statistical software now offer an increasingly “power” and allow
to run computationally intensive procedures (bootstrap, jacknife, permuation tests,. . . )
without leaving the computer desktop for one night or more. Furthermore, multivariate
exploratory statistics have brought novel and exciting graphical displays to highlight the
relations between several variables at once. As they are part of results reporting, they
complement very kindly the statistical models tested against the observed data.

We propose to analyze some the data provided in this textbook with the open-source
R statistical software. The official website, www.r-project.org, contains additional in-
formation and several handbook wrote by international contributors. To my opinion, R
has benefited from the earlier development of the S language as a statistical program-

1

www.r-project.org
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ming language, and as such offers a very flexible way to handle every kind of dataset.
Its grahical capabilities, as well as its inferential engine, design it as the more flexible
statistical framework at this time.

The R packages used throughout these chapters are listed below, in alphabetical
order. A brief description is provided, but refer to the on-line help (help(package="xx"))
for further indications on how to use certain functions.

Package listing. Since 2007, some packages are now organized in what are called Task

Views on cran website. Good news: There is a Task View called ExperimentalDesign.
By the time I started to write this textbook, there were really few available ressources
to create complex designs like fractional factorial or latin hypercube designs, nor was
there any in-depth coverage of doe analysis with R, except [?] who dedicated some
attention to blocking and factorial designs, J. Faraway’s handbook, Practical Regression
and Anova using R [?] (but see cran contributed documentation1), and G. Vikneswaran
who wrote An R companion to “Experimental Design” which accompagnies Berger and
Maurer’s book [?].

car provides a set of useful functions for ANOVA designs and Regression Models;

lattice provides some graphical enhancements compared to traditional R graphics, as
well as multivariate displays capabilities;
For Trellis Displays, see http://stat.bell-labs.com/project/trellis/

lme4 the newer and enhanced version of the nlme package, for which additional data
structure are available (nested or hierarchical model,. . . );

nlme for handling mixed-effects models, developped by Pinheiro & Bates [?];

npmc implements two procedures for non-parametric multiple comparisons procedures;

Further Readings. Additional references are given in each chapter, when necessary.
However, there are plenty of other general textbooks on doe, e.g. [?, ?, ?] (English) and
[?, ?, ?, ?] (French), among the most recent ones.

1Faraway has now published two books on the analysis of (Non-)Linear Models, GLM, and Mixed-
effects Models, see [?, ?].

2
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Chapter 2

Simple Comparative Experiments

2.1 Summary of Chapter 2

After having defined the way simple comparative experiments are planned (treatments
or conditions, levels of a factor), Montgomery briefly explains basic statistical concepts
related to the analysis of such designs. This includes the ideas of sampling distribu-
tions, or hypothesis formulation. Two samples related problems are covered, both under
specific distributional assumption or in an alternative non-parametric way. The t-test is
probably the core concept that one has to understand before starting with more complex
models. Indeed, the construction of a test statistic, the distribution assumption of this
statistic under the null hypothesis (always stated as an absence of difference between
treatment means), and the way one can conclude from the results are of primary impor-
tance. This chapter must be read by every scientist looking at a first primer in statistical
inference.

2.2 Sampling distributions

Several probabillity distributions are avalaible in R. They are all prefixed with one of
the following letters: d, p, q, and r, which respectively refers to: density function,
probability value, quantile value and random number generated from the distribution.
For example, a sample of ten normal deviates, randomly choosen from the standard
normal distribution (also refered to as N (0; 1), or Z distribution), can be obtained using

x <- rnorm(10)

Since each call to the random number generator (rng) of R involves a different random
seed1, it could be convenient to fix its value such that the same results can be obtained
later. To do so, use something like:

1Random number generators were originally based on a congruential recurrence relation, e.g.
xk+1 = a0 + b · xk (mod c), where a0 is the initial (fixed) seed for a given sequence. Now, several
sophisticated algorithms are available; refer to ?RNGkind.

3
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set.seed(891)

The function set.seed is used to set the rng to a specified state, and it takes any
integer between 1 and 1023. Random values generation is part of statistical theory and
these techniques are widely used in simulation sstudies. Moreover, random numbers are
the core of several computational intensive algorithms, like the Bootstrap estimation
procedure or Monte Carlo simulation design. A very elegant introduction to this topic
is provided in [?] (see Chapter 8 for some hints on the use of R rng).

R can be used to produce different kind of graphical representation. It’s probably the
most challenging statistical tool for that particular option. Among them, dot diagram
and histogram are useful tools to visualize continuous variable. Figure 2.1 has been
created with the following commands:

# Tension Bond Strength data (Tab. 2-1, p. 24)

y1 <- c(16.85,16.40,17.21,16.35,16.52,17.04,16.96,17.15,16.59,16.57)

y2 <- c(16.62,16.75,17.37,17.12,16.98,16.87,17.34,17.02,17.08,17.27)

y <- data.frame(Modified=y1,Unmodified=y2)

y.means <- as.numeric(apply(y,2,mean))

opar <- par(mfrow=c(2,1),mar=c(5,7,4,2),las=1)

stripchart(y,xlab=expression("Strength (kgf/cm^2)"),pch=19)

arrows(y.means,rep(1.5,2),y.means,c(1.1,1.9),length=.1)

text(y.means,c(1.2,1.8),round(y.means,2),pos=4,cex=.8)

# Random deviates (instead of data from metal recovery used in the book)

rd <- rnorm(200,mean=70,sd=5)

hist(rd,xlab="quantile",ylab="Relative frequency",

main="Random Normal Deviates\n N(70,5)")

par(opar)

As can be seen with this snippet of code, relatively few commands allow to pro-
duce powerful graphics. . . Indeed, several books or website are dedicated to exploratory
multivariate graphics. Among others, the interested reader may have a look at:

• S. Deepayan (2008). Lattice. Multivariate Data Visualization with R2. Springer.
http://www.springer.com/statistics/computational/book/978-0-387-75968-5

• R Graph Gallery, http://addictedtor.free.fr/graphiques/

• Trellis Display, http://stat.bell-labs.com/project/trellis/

• P. Murrel (2005). R Graphics3. Chapman & Hall/CRC.

and, of course, the must-have-one book that Venables & Ripley wrote on the S language,
now in its fourth edition, [?].

Histograms are naturally more appropriate when there are numerous observations
(e.g. n > 20). It is not uncommon to express the data as a density plotted against the
observed value, and to superimpose a normal density function with the corresponding

2
R code and Figures can be found on http://dsarkar.fhcrc.org/lattice/book/figures.html.

3
R code and Figures can be found on http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html.

4

http://www.springer.com/statistics/computational/book/978-0-387-75968-5
http://addictedtor.free.fr/graphiques/
http://stat.bell-labs.com/project/trellis/
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Figure 2.1: Dot diagram
for the tension bond strength
data (upper panel) and His-
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Figure 2.2: Density esti-
mate for the same 200 normal
random deviates.

mean and SD. However, a better way to highlight the distribution of the variable under
study, especially in its continuous aspect, is to draw a non-parametric density curve, as
shown in Figure 2.2. We often get a clearer picture of the underlying distribution, while
the appropriate the number of bins used to display the histogram is not always an easy
choice. But see [?] (pp. 126–130) for additional discussion on this topic.

An other solution is to use a box-and-whisker plot, also called a boxplot. As illus- John Tukey

(1915–2000)
introduced
modern
techniques
for the
estimation of
spectra of
time series,
notably the
Fast Fourier
Transform.

trated in Figure 2.3, a lot of information can be found in a boxplot. First, the rectangle
box displays half of the total observations, the median being shown inside as an hor-
izontal segment. The upper side of the box is thus the third quartile, while the first
quartile is located at the lower side. The extreme tickmarks correspond to the min and
max values. However, when an observation exceeds ±1.5 times the inter-quartile range
from the median, it is explicitely drawn on the plot, and the extreme tickmarks then
correspond to these reference values. This way of handling what could be considered as
“extreme values” in R is known as the Tukey’s method. To get such a grahics, one use
boxplot() function which accept either formula or variable + factor inputs. Figure 2.3
is thus simply produced using

boxplot(y,ylab="Strength (kgf/cm^2)",las=1)

An example of a Laplace-Gauss—or the “normal”, for short—distribution, with mean
0 and SD 1, is shown in Figure 2.4. As it is a density function, its area equals 1 and any
are comprised between two x-values can be calculated very easily using modern computer
software. For instance, the shaded gray area, which is the probability P (1.2 ≤ y < 2.4,
is estimated to be 0.107. With R, it is obtained using pnorm(2.4)-pnorm(1.2).

5
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Figure 2.3: Boxplot for the portland cement tension bond strength experiment.

x <- seq(-3.5,3.5,by=0.01)

y <- dnorm(x)

plot(x,y,xlab="",ylab="",type="l",axes=F,lwd=2)

axis(side=1,cex.axis=.8); axis(2,pos=0,las=1,cex.axis=.8)

mtext(expression(mu),side=1,line=2,at=0)

mtext(expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2,

2*sigma^2)})),side=3,line=0)

# highlight a specific area (drawing is from left to right,

# then from right to left)

polygon(c(x[471:591],rev(x[471:591])),c(rep(0,121),rev(y[471:591])),

col="lightgray",border=NA)

2.3 Testing hypotheses

Statistical hypothesis are generally formulated, based on a given model, as a set of
two opposite assertions, the null hypothesis being that the statistics reflecting some
knowledge about the treatment effect are not different one from the other. Consider a
possible analytical model that describes two-sample related outcomes:

yij = µi + εij i = 1, 2; j = 1, 2, . . . , ni, (2.1)

where yij are the observations gathered from (statistical) unit j in group i, and µi is the
group mean. Then, the corresponding hypothesis that can be formulated is

H0 : µ1 = µ2

H1 : µ1 6= µ2.
(2.2)

6
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Figure 2.4: The “normal” density function.

Here H0 denotes the null hypothesis of the absence of effect while H1 (also denoted HA

by some authors) is the logical negation of H0.
This testing framework lead to consider two kind of potential errors: Type I error

(α) when we reject the null while it is true in the real world, Type II error (β) when the
null is not rejected while it should have been. Formally, this is equivalent to

α = Pr(Type I error) = Pr(reject H0 | H0 is true)
β = Pr(Type II error) = Pr(fail to reject H0 | H0 is false)

(2.3)

Using this notation, α is generally refered to as the significance level, and it is what is
reported by statistical software when running a given test. Both kind of error are equally
important, although Type II error tends to be neglected in many studies. Figure 2.5
highlights the relation between these two quantities, based on two hypothetical distri-
butions. The script is taken from cran website (but it is not very difficult to reproduce
with a few commands).

2.4 The two-sample t-test

Comparing two set of observations on a response variable involves three steps: (1) con-
structing a test statistics, (2) defining its sampling distribution, and (3) computing the
associated p-value. As already said, the p-value represents the probability of observing
a value at least as extremal as that observed using the present data. This is obviously
a purely frequentist approach, but it proves to be sufficient in most cases.

7
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Figure 2.5: Type I and II errors.

The test statistic is given by

t0 =
ȳ1 − ȳ2

Sp

√
1
n1

+ 1
n2

, (2.4)

where ȳ1,2 are the group means, n1,2 the sample sizes and Sp an estimate of what is
called the pooled variance. When n1 = n2, the design is said to be balanced. The pooled
variance is simply the average of the within-group variance, and is computed, in the
general case, as

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (2.5)

The quantity n1 + n2 − 2 is called the degrees of freedom of the test statistics, that is
the number of observations free to vary independently.

There, we must distinguish two approaches in the inferential paradigm and the in-
terpretation of the p-value. According to the Neyman & Pearson’s view, the statistical
test provides an answer to a purely binary decision (accept or reject the null hypothesis)
and the value of the p is not to be interpreted further than its position with respect to
a criterion value, say 5%, defined before the start of the experiment4. On the contrary,
Fisher [?] has defended the idea that the value of p itself provides an indication of the Sir Ronald

Aylmer

Fisher

(1890–1962)
significantly
contributed
to the
development
of methods
and sampling
distributions
suitable for
small samp-
les, and he’s
considered
the father of
analysis of
variance.

strength of the result against the null hypothesis.
There are very long-standing debates on these two approaches and on the way sta-

tistical results can be interpreted. We will use most of the time the former approach
(binary decision rule) but also provide the value of the resulting p, though it is generally
computed based on asymptotic theoretical results.

4The Neyman-Pearson criterion says that we should construct our decision rule to have maximum
probability of detection while not allowing the probability of false alarm to exceed a certain value α. It
can be shown that a likelihood ratio test that reject H0 in favor of the alternative hypothesis is the most
powerful test of size α, though in most case, this test is not used.

8
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Confidence interval (CI) can be computed easily based on the sampling distribution
of the test statistic, which is the well-known Student T (ν) distribution whose quantiles
are available in R (see ?qt). The general formulation of a 100(1−α)% confidence interval
for a difference of two means, say ȳ1 − ȳ2, is easily obtained as

(ȳ1 − ȳ2)± tα/2,n1+n2−2Sp

√
1

n1
+

1

n2
(2.6)

where α = 0.05 means a 95% CI. Interesting discussions on the use and interpretation
of a confidence interval can be found in articles wrote by Lecoutre and coworkers, e.g.
[?, ?].

The function t.test() can be applied to the Tension Bond Strength data.

t.test(y1,y2,var.equal=TRUE)

The output is shown below:

Two Sample t-test

data: y1 and y2

t = -2.1869, df = 18, p-value = 0.0422

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.54507339 -0.01092661

sample estimates:

mean of x mean of y

16.764 17.042

R gives both the t0, degrees of freedom and p-value, as well as the 95% confidence interval
computed using Formula 2.6. The test is significant at the commonly admitted 5% level,
or, alternatively, the p-value provides strengthening evidence against the null. We reach
a similar conclusion when interpreting the 95% CI as it does not cover 0. Overall, there
is a 0.278 kgf/cm2 difference between the two treatments.

as.numeric(diff(apply(y,2,mean)))

If we omit the var.equal=TRUE option, R computes the Welch modified t-test. In this
case, instead of using a pooled variance estimate, degrees of freedom are approximate
to get a less liberal p-value; this is also refered to as Satterthwaite approximate p-value
[?, ?]. The formula for computing degree of freedom is then

ν =
2(w1 + w2)

w12/(n1 − 1) + w22/(n2 − 1)
(2.7)

Applied to the preceding example, this gives a t-value of -2.187, with 17.025 df, and
a p-value of 0.043.

t.test(y1,y2)

As reporting a non-integer degree of freedom may be confusing, it is often neglected.
Here, as variance are not too different between the two groups, we get quite comparable
p-value because it isn’t necessary to adjust very strongly the degrees of freedom of the
test statistic.

9
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2.5 Comparing a single mean to a criterion value

2.6 Application to paired samples

Another situation arises when the two samples are related in some way. For example,
we can imagine an experiment where a number of specimens are tested by both tip 1
and tip 2. Data are in hardness.txt.

tmp <- scan("hardness.txt",sep=",")

hardness <- data.frame(y=tmp,tip=gl(2,10))

t.test(y~tip,data=hardness,paired=TRUE)

Here, we cannot conclude to a significant difference between the two tips (t(9) =
−0.26, p = 0.798). If we look at a plot of the two evaluations (Fig. 2.6, left), we
can see that both are distributed along a line with slope 1 suggesting a close agreement
between Tip 1 and Tip 2. In this particular context, a more useful way of checking
agreement is to plot the difference between Tip 1 and Tip 2 as a function of the sum of
the two evaluations (Fig. 2.6, right). This was initially proposed for assessing biomedical
agreement by [?].

with(hardness, plot(y[tip==1],y[tip==2],xlab="Tip 1",ylab="Tip 2"))

abline(0,1)

with(hardness, plot(y[tip==1]+y[tip==2],y[tip==1]-y[tip==2],

xlab="Tip 1 + Tip 2",ylab="Tip 1 - Tip 2",ylim=c(-3,3)))

abline(h=0)

2 3 4 5 6 7 8 9
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 2
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−
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Figure 2.6: The Hardness testing experiment.

Let’s look at we would get if we ignore the pairing:
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t.test(y~tip,data=hardness,var.equal=TRUE)

As expected, the degree of freedoms are twice the previous ones (n1 + n2 − 2 = 2(n− 1)
when n1 = n2 = n) and the t-value is larger reflecting the extra variance not accounted
for.

2.7 Non-parametric alternative

For two-sample comparisons, two non-parametric tests can be used, depending on the
way data are collected. If both sample are independent, we use Mann-Whitney-Wilcoxon
rank sum test, while for paired sample the corresponding test is called Wilcoxon signed
rank test.

Both are called using R function wilcox.test and the option paired={TRUE|FALSE}.
For the previous examples, we get

wilcox.test(y1,y2)

wilcox.test(y~tip,data=hardness,paired=TRUE)

11
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Chapter 3

Experiments with a Single Factor:
The Analysis of Variance

3.1 Summary of Chapter 3

Montgomery reviews the basic principles underlying the one-way ANOVA Model under
both the “classical” approach (based on sum of squares colated in the so-called ANOVA
table) and the regression approach (based on the estimation of model parameters and
solving normal equations). Once the full model has been evaluated, it is often necessary
to determine which of the treatment means really differ one from the other. Thus, it
calls for multiple comparison procedures which take care of the Type I error inflation
caused by the multiplicity of hypothesis tests. Another approach includes the design of
orthogonal contrasts which do not inflate the experiment-wise error rate. Finally, a non
parametric alternative, the Kruskal-Wallis ANOVA, is presented, as well as its multiple
comparisons counterpart.

3.2 Analysis of the fixed effects model

The Etch Rate data ara available in the file etchrate.txt. Before starting the analysis,
we may want to view graphically the evolution of the observed response (Fig. 3.1).

etch.rate <- read.table("etchrate.txt",header=T)

grp.means <- with(etch.rate, tapply(rate,RF,mean))

with(etch.rate, stripchart(rate~RF,vert=T,method="overplot",pch=1))

stripchart(as.numeric(grp.means)~as.numeric(names(grp.means)),pch="x",

cex=1.5,vert=T,add=T)

title(main="Etch Rate data",ylab=expression(paste("Observed Etch Rate (",

ring(A),"/min)")),xlab="RF Power (W)")

legend("bottomright","Group Means",pch="x",bty="n")

As can be seen from this scatterplot, there is a clear increase in observed etch rate as
RF Power also increases. Indeed, mean etch rate evolves from 551.2 Å/min at 160 W to

12
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Figure 3.1: The Etch Rate data.

707.0 Å/min at 220 W. Moreover, it seems that this increase occurs in a linear fashion,
but we will return to this point later on.

In its most basic formulation, the one-way model of ANOVA is expressed as

yij = µi + εij i = 1, . . . , a; j = 1, . . . , n, (3.1)

where yij is the jth observation associated to treatment (or group) i, µi is the treatment
mean, and εij is the so-called residual value assumed to be NIID. Equation 3.1 is called
the means model. If we consider the µi with respect to the overall mean, denoted as µ
with µi = µ+ τi, then we can rewrite Equation 3.1 as

yij = µ+ τi + εij i = 1, . . . , a; j = 1, . . . , n. (3.2)

Now, it can be seen that the τi represent the difference between treatment means and
the overall mean, and they are called the effects, thus we talked about an effect model.

3.3 Estimating Model parameters

The ANOVA table (Tab. 3.1) is produced using the next commands. The aov() and
lm() functions are of particular significance when running any ANOVA Model, but it is
important to emphasize that the coding of variable is very important, especially when
using the lm() command. In that particular case, categorical variables should be factor

in the R terminology, otherwise a linear regression will be performed!

# first, we convert each variable to factor

etch.rate$RF <- as.factor(etch.rate$RF)

13
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etch.rate$run <- as.factor(etch.rate$run)

# next, we run the model

etch.rate.aov <- aov(rate~RF,etch.rate)

summary(etch.rate.aov)

Df Sum Sq Mean Sq F value Pr(>F)

RF 3 66870.55 22290.18 66.80 0.0000
Residuals 16 5339.20 333.70

Table 3.1: Results of the ANOVA model for the Etch Rate Experiment.

RF Mean Square largely overcomes residuals (also called error) MS which is com-
puted simply as the mean of the within-treatment variances. In other words, there is
much more between-treatment variability than within-treatment ones, and such a result
is very unlikely to occur by chance alone. Note that R doens’t produce a separate row
for Total SS as it doesn’t provide any additional information most of the time. Here,
Total SS simply equals 66870.55 + 5339.20 = 72209.75 (with 3 + 16 = 19 df).

Turning back to the ANOVA result, we can estimate the overall mean and the treat-
ment effects τ̂i = ȳ1· − ȳ·· as follows:

# overall mean

(erate.mean <- mean(etch.rate$rate))

# treatment effects

with(etch.rate, tapply(rate,RF,function(x) mean(x)-erate.mean))

This gives

RF 160 180 200 220

τ̂i -66.55 -30.35 7.65 89.25

Another way to get the same result is to use the model.tables() function which
provides valuable effect size information with complex design.

model.tables(etch.rate.aov)

Finally, to get 100(1−α)% confidence intervals for treatment effects, we may compute
them by hand using the following formula

ȳi· ± tα/2,N−a

√
MSe
n

(3.3)

whereas for any two treatments comparison the above formula becomes

(ȳi· − ȳj·)± tα/2,N−a

√
2MSe
n

(3.4)

Using R directly, we only have to compute the pooled SD and get the value of the
corresponding t quantile.

14



Dec
em

be
r 2

, 2
01

2

Draf
t V

ers
ion

MSe <- summary(etch.rate.aov)[[1]][2,3]

SD.pool <- sqrt(MSe/5)

t.crit <- c(-1,1)*qt(.975,16)

Thus, we can compute any 95% CI for a single mean as ȳi· ± 17.3, and for any pair of
means as (ȳi· − ȳj·) ± 24.5. For the latter, we can compare what we would get with a
t-test for independent samples, eg. for ȳ1· − ȳ2·:

with(etch.rate, t.test(rate[RF==160],rate[RF==180],var.equal=TRUE))

The corresponing 95% IC for the difference of means is: [-63.11;-9.29]. This happens
to be slighlty different from the above calculations which lead to [-60.7;-11.7]. In any
two cases, the IC doesn’t include 0, suggesting a significant difference between the two
means. However, in the ANOVA framework, we are using the pooled SD calculated on
all subsamples (SD=8.17)

mean(tapply(etch.rate$rate,etch.rate$RF,var))/5

while for the t-test only the variances related to the two samples are taken into account.
In this case, the pooled SD is larger and equals 13.05 which explain why the previous
CI differ in their respective amplitude.

mean(c(var(etch.rate$rate[etch.rate$RF==160]),

var(etch.rate$rate[etch.rate$RF==180])))

Generally speaking, when the F -test from an ANOVA table is significant, it means
that at least one pair of means is significantly different (or alternatively, ∃ i, j (i 6=
j) |µi· − µj· 6= 0). We should observe a convergent result using a t-test on the corre-
sponding groups. But it may not be advised to simultaneously test all pairs of means
using simple t-test as the Type I error would increase with the number of comparisons
made. This way, the probability of detecting a significant difference would be largely
greater than α = 0.05. One way to confine the experimentwise error rate to a given α is
to replace α/2 in the previous expression with α/2r, where r is the number of intervals
computed at the same time. This results from Bonferroni’s Theorem. Carlo

Bonferroni

(1892–1960)
contributes
to probabi-
lity theory
more than to
simultaneous
statistical
inference.
Bonferroni’s
adjustement
relies rather
on Boole’s

inequality

although he
wrote two
articles
about this
subject.

As R is an Object-Oriented language—and this is even more apparent with the recent
development of S4 classes—we may be tempted to apply the confint() function on the
aov object directly. However, if we observe the resulting R output:

> confint(etch.rate.aov)

2.5 % 97.5 %

(Intercept) 533.88153 568.51847

RF180 11.70798 60.69202

RF200 49.70798 98.69202

RF220 131.30798 180.29202

we see that it is far from the expected 95% CI associated to treatment effect if they are
expressed as difference between group means and overall etch rate mean (τi). What is
computed instead is the estimated 95% CI for treatment effect substracted to a baseline
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or reference level, here the first level of RF (ie. 160 W). So, the difference ȳ4· − ȳ1· is
estimated to lie between 131.3 and 180.3 95% of the time1. We can check the correctness
of the result using Equation 3.4, eg. for the last row labeled RF220:

as.numeric(grp.means[4]-grp.means[1])+c(-1,1)*qt(.975,16)*sqrt(2*MSe/5)

3.4 Model checking

Model checking includes the verification of the following assumptions (in decreasing order
of importance):

1. independence,

2. homoscedasticity (homogeneity of the within-group variances),

3. normality of the residuals.

In short, residuals values, defined as eij = yij − ŷij, should be structureless and well
balanced between treatments.

Model checking can be done graphically and this often is the recommended way,
although there exists a formal test for each of the above hypotheses. Several diagnostic
plots are proposed in Figure 3.2.

opar <- par(mfrow=c(2,2),cex=.8)

plot(etch.rate.aov)

par(opar)

When applied on the result of a call to aov(), the plot method produces different
graphics which can be controlled with the which= option. R defaults to produce (see
?plot.lm): a plot of residuals against fitted values, a Scale-Location plot of

√
eij against

fitted values, a Normal Q-Q plot, and a plot of residuals against leverages. The first two
subplots are very useful to check for any departure from the homoscedasticity and nor-
mality assumptions. The last plot (residuals vs. leverages) provides insight in possible
influencing observations. This is a convenient wrapper function for diagnostic plots that
have to be plotted separetely otherwise. For instance, plot(fitted(etch.rate.aov),residuals(etch.rate.ao
produces the first plot (residuals against fitted values), while qqnorm(residuals(etch.rate.aov)); qqline(residuals(

corresponds to a Normal Q-Q plot. It could be useful to use these commands when we’re
interested only in derived plan or subset of predictors.

Standardized residuals may be used as a rough check for outliers. They are defined
as

dij =
eij√
MSe

(3.5)

and it can be shown that they are distributed as N (0, 1) provided εij ∼ N (0, σ2). About
95% of the standardized residuals should fall within ±2.

1Recall that the probability is attached to the confidence interval which is random, not to the true
(population) parameter.
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Figure 3.2: Model checking for the ANOVA model.

Independence of observations is largely a matter of the experimental design and the
way data are collected. Perhaps the simplest graphical way to check for independence is
to plot the residuals against run order or any time index (Fig. 3.3). This also allows to
check for the homoscedasticity assumption since any departure from constant variance
would be reflected in localized subsets of observations differing in their mean response,
or any systematic pattern of outlyiers.

Looking at the plot in Figure 3.3, no such pattern are visible thus we have no reason
to reject the independence hypothesis. A more formal test, and an historical ones, is
called the Durbin-Watson. This procedures aims at testing the serial autocorrelation of
errors and by default makes use of constant lag of 1. It is readily available in the car

and lmtest packages.

require(car)

durbin.watson(etch.rate.aov)

The assumption of constant variance, or homoscedasticity, is probably the most
important in practice since we compute a pooled variance estimate by averaging the
within-treatment variance. Any departure from this hypothesis means that some of
the groups have larger or smaller variance than other, and this causes our estimate to
be somewhat inaccurate. The question of what should be considered as significantly
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Figure 3.3: Model checking for the ANOVA model (2).

“larger” or “smaller” depends on what is being measured, but it is worth noting that
any formal test leading to the rejection of the hypothesis of constant variance cannot
help to answer this question. Indeed, if we reject H0 : σ2

1 = σ2
2 = · · · = σ2

a, what can
we say then? Nevertheless, the most widely recommended test of homoscedasticity is
Bartlett’s test. Maurice

Stevenson

Bartlett

(1910–2002)
worked on
the analysis
of data with
spatial and
temporal
patterns. He
is also known
for his contri-
bution in the
theory of
statistical
inference and
multivariate
analysis.

bartlett.test(rate~RF,data=etch.rate)

In case one suspect strong departures from normality, we may use Levene’s testa s an
laternative test for homogeneity of variances. This test is available in the car package.

levene.test(etch.rate.aov)

Finally, the normality of the residuals can be assessed directly using a Q-Q plot as
in Figure 3.2 (the so-called droite de Henry, in French) where we expect the values to
lie approximately on the first bisecting line, or using the Shapiro-Wilk’s test. Note that
in this latter case, the test should be carried out on each subsample separately, which
might be problematic with few replications per subgroup.

shapiro.test(etch.rate$rate[etch.rate$RF==160])

3.5 Comparison among treatment means

Given our a = 4 treatments, we have a set of 4(4 − 1)/2 comparisons, the null hypoth-
esis being H0 : µi = µj for a given (i, j) pair of treatment means. There are several
ways to carry out parametric multiple comparisons within R. Perhaps the most common
and easy to understand is the systematic pairwise comparison between every treatment
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means. To prevent from inflating Type I error, again, several methods have been pro-
posed. Among them, the most conservative is the Bonferroni correction which adjust
the nominal α value by the number of comparisons (we already discussed this kind of
procedure page 15).

First, a pairwise t-test with either Bonferroni or Hochberg correction lead to the
rejection of all null hypotheses regarding equality of treatment means (Tab. 3.2 and
3.3). There are some differences in the p-values computed in each case because of the
adaptive way of handling the correction factor in the Hochberg case.

pairwise.t.test(etch.rate$rate,etch.rate$RF,p.adjust.method="bonferroni")

pairwise.t.test(etch.rate$rate,etch.rate$RF,p.adjust.method="hochberg")

160 180 200

180 0.038 – –
200 5.1e-05 0.028 –
220 2.2e-09 1.0e-07 1.6e-05

Table 3.2: Bonferroni method.

160 180 200

180 0.0064 – –
200 2.5e-05 0.0064 –
220 2.2e-09 8.5e-08 1.1e-05

Table 3.3: Hochberg method.

Another alternative is to use a modified test statistic, to take into account the Type
I error inflated by multiple test. This is the approach taken by the Tukey HSD2 test [?].
R function TukeyHSD() gives both adjusted p-value and 95% CI. Furthermore, there is
a plot method that provides a nice graphical summary (Fig. 3.4). Applying the Tukey
HSD test, we raise to the same conclusions as with the “protected” t-tests. Results are
given in Table 3.4 and Figure 3.4 where it can be seen that none of the 95% CI includes
0.

TukeyHSD(etch.rate.aov)

plot(TukeyHSD(etch.rate.aov),las=1)

i− j δ LB-CI UP-CI adj. p

180-160 36.2 3.145624 69.25438 0.0294279
200-160 74.2 41.145624 107.25438 0.0000455
220-160 155.8 122.745624 188.85438 0.0000000
200-180 38.0 4.945624 71.05438 0.0215995
220-180 119.6 86.545624 152.65438 0.0000001
220-200 81.6 48.545624 114.65438 0.0000146

Table 3.4: Tukey HSD method.

The 160–180 and 200–180 pairs of treatment means lead as before to p-values com-
prised between 0.05 and 0.01, well above the other p-values. This also apparent from
the lower bound of the 95% CI shown in Figure 3.4.

2HSD stands for Honest Statistical Difference.
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Figure 3.4: Example of an Operating Characteristic curve for the one-way
ANOVA (Etch rate example).

Other methods will not be discussed here, but the interested reader is referred to [?]
(Chapter 5) or [?] for further descriptions of the pro and cons of the different procedures.
R offers a dedicated package called multcomp (see also the Design package) which can
handle multiple comparisons for Linear Models. Another useful reference is [?] with the
accompanying package multtest3.

As an alternative to the previous techniques, one can construct specific contrasts for
testing only some of treatment means one to the other. If these contrasts, or difference
of means, are designed such that they are orthogonal altogether, then tests can be done
at a nominal 0.05 level without inflating the overall error rate.

There are various ways to design such contrasts in R. We here review only two of
them, with the hope that the reader will not be confused by some of the matrix algebra
involved in the former method.

3.6 Power and Sample size

Power and sample size determination are two related concepts. In R, the function
power.t.test() allows for the necessary computations for the one and two-sample t-
test. In the case of the one-way ANOVA (with fixed effects), there is a function called
power.anova.test() which do that job, as well as powerF() in the QuantPsyc package.
This last function relies on the idea that the F distribution can be manipulated such
that arranging its degrees of freedom (especially that in the denominator for sample

3For the moment, I only tried some of its functionnalities, and I wrote a very brief note entitled Mul-

tiple comparisons and p-value adjustment which can be consulted from here: www.aliquote.org/memos/
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size calculation) or the effect size reflected in the value of any F test computed from an
ANOVA or Regression analysis allows the user to get an estimate of either sample size
or power for a given design [?]. Generally, power calculation relies on Operating Char-
actristic curves, where the probability of a Type II error is plotted against a parameter
Φ (see Eq. 3.6). An example of such an OC curve, applied to the etch rate experiment,
is given is Figure 3.5.

There are basically two very common situations: one in which the experimenter
specifies the expected treatment means under the alternative, and the other where the
experimenter specifies the minimum difference between any two pair of treatment means.

For the first case, we consider an application using the plasma etching experiment.
Suppose that the experimenter expects to reject the null with a power of 0.90 if (and
only if) the four treatment means are

µ1 = 575 µ2 = 600 µ3 = 650 and µ4 = 675,

considering α = 0.01 and σ = 25 Å/min. This way, we have

Φ2 =
n
∑4

i=1 τ
2
i

aσ2
=

n(6250)

4(25)2
= 2.5n (3.6)

Using R, the following code computes the required sample size to get a power of 0.90
(ie. β ≤ 0.01).

grp.means <- c(575,600,650,675)

power.anova.test(groups=4,between.var=var(grp.means),within.var=25^2,

sig.level=.01,power=.90)

This gives the following results:

Balanced one-way analysis of variance power calculation

groups = 4

n = 3.520243

between.var = 2083.333

within.var = 625

sig.level = 0.01

power = 0.9

NOTE: n is number in each group

We conclude that n = 4 for each treatment group would allow us to detect the above
effect sizes wth a power of 0.90. If we’re interested in the way the SD (specified a priori)
may influence the resulting power, for a fixed sample size, we can run the following
script:

sd <- seq(20,80,by=2)

nn <- seq(4,20,by=2)

beta <- matrix(NA,nr=length(sd),nc=length(nn))
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for (i in 1:length(sd))

beta[i,] <- power.anova.test(groups=4,n=nn,between.var=var(grp.means),

within.var=sd[i]^2,sig.level=.01)$power

colnames(beta) <- nn; rownames(beta) <- sd

opar <- par(las=1,cex=.8)

matplot(sd,beta,type="l",xlab=expression(sigma),ylab=expression(1-beta),col=1,

lty=1)

grid()

text(rep(80,10),beta[length(sd),],as.character(nn),pos=3)

title("Operating Characteristic Curve\n for a=4 treatment means")

par(opar)

As can be seen from Figure 3.5, increasing SD or decreasing sample size (shown on the
right of the plot) results in a loss of power. For instance, with σ = 50 (twice the value
postulated in the previous calculation) and n = 6, we get only a power of 0.60 (for a
given α = 0.01). We would have to increase the sample size up to n = 10 to get at least
a power > 0.80.

As an illustration of the second power calculation objective, consider the folowing
situation. The experimenter now whishes to reject the null with probability ≥ 0.90 if
any two treatment means differed by as much as 75 Å/min, with α = 0.01. Considering
an SD of σ = 25, the minimum value of Φ2 is estimated to be

Φ2 =
nD2

2aσ2
=

n(75)2

2(4)(252)
= 1.125n (3.7)

Estimation of n can be done using OC curve; however, I haven’t found any R function
that do that computation automatically.

3.7 Non-parametric methods in ANOVA

A non-parametric alternative to the one-way ANOVA is the Kruskal-Wallis ANOVA,
which is quite similar except it is based on the ranks of the observations rather than
their nominal values. The Kruskal-Wallis test is used to test the null hypothesis that the
a treatments are identical with respect to their central position (here, the median). It
should be kept in mind that non-parametric tests assume that within-groups dispersion
is also homogeneous as in the parametric approach. Indeed, if this was not the case, we
could hardly segregate any individual from one group from an other one as their distance
might be accounted for by the difference in variance of the subpopulations.

Carrying out the K-W test,

kruskal.test(rate~RF,data=etch.rate)

gives a test statistic of 16.91 with 3 df and a p-value < 0.001. This result doesn’t refute
our preliminary conclusion using the classical ANOVA Model.

In the non-parametric approach, multiple comparisons techniques challenge the usual
“easiness” of parametric ones. Indeed, this raises the question of how to test
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Figure 3.5: Example of an Operating Characteristic curve for the one-way
ANOVA (Etch rate example).

The npmc packages offers NP multiple hypothesis testing for the unbalanced one-way
layout, based on Behrens-Fisher and Steel procedures. These procedures come from [?].

library(npmc)

# we need to reformat the data.frame with var/class names

etch.rate2 <- etch.rate

names(etch.rate2) <- c("class","run","var")

summary(npmc(etch.rate2),type="BF")

The results are summarized in Table 3.5.
Compared to parametric multiple comparisons (§ 3.5), we reach similar conclusions:

every pair of treatment means can be considered as significantly different one from the
other.

Further Notes on distribution assumptions. It is worth to remind the reader
that non-parametric tests share common assumptions with parametric counterparts, in
particular the hypothesis of comparable dispersion. It also applies to permutation tests.
If we were to compare two distributions for which variance (or whatever dispersion
measure is used) strongly differ one from the other, it would not make sense to use
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i–j effect LB-CI UP-CI p-value 1s p-value 2s

Behrens-Fisher

1-2 0.92 0.5764163 1.263584 0.011450580 0.020539156
1-3 1.00 0.9998842 1.000116 0.000000000 0.000000000
1-4 1.00 0.9998842 1.000116 0.000000000 0.000000000
2-3 0.94 0.6758851 1.204115 0.002301579 0.004440345
2-4 1.00 0.9998842 1.000116 0.000000000 0.000000000
3-4 1.00 0.9998842 1.000116 0.000000000 0.000000000

Steel

1-2 0.92 0.4254941 1.414506 0.07123615 0.13078270
1-3 1.00 0.5054941 1.494506 0.02446374 0.04602880
1-4 1.00 0.5054941 1.494506 0.02417453 0.04631413
2-3 0.94 0.4469949 1.433005 0.05465670 0.10154286
2-4 1.00 0.5054941 1.494506 0.02412958 0.04654181
3-4 1.00 0.5054941 1.494506 0.02414774 0.04635531

Table 3.5: Results from the NP multiple comparisons procedures applied to the
etch rate data.
LB/UP-CI: lower and upper-bound of 95% CI; p-values 1s/2s: one-sided and two-sided p-value.

either a parametric or a non-parametric hypothesis test. Indeed, a given observation
might be drawn from one or the other distribution, but due to overlapping of the two
distributions with differing variance, it wouldn’t be possible to associate the individual
observation with any of them. In other word, we loose the exchangeable hypothesis.

However, a minor modification of the test statistics, as proposed by Welch [?], may
be used for the case of non-constant variance. Applying the following principle to the
etch rate data,

oneway.test(rate~RF,etch.rate)

gives a F value of 68.72 and a p-value largely < .001. As was said for the Welch modified
t-test (p. 9), degrees of freedom for the denominator (the residual) are adjusted, they
are less commonly reported.
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Chapter 4

Randomized Blocks, Latin
Squares, and Related Designs

4.1 Summary of Chapter 4

4.2 Randomized Complete Block Design

Randomized Complete Block Design (RCBD) is a widely used tools to study some effect
of interest while controlling for potential nuisance factor(s). It should not be confounded
with covariance analysis whereby response are adjusted a posteriori to take into account
nuisance factors.

The so-called Effects model can be expressed as

yij = µ+ τi + βj + εij (i = 1, 2, . . . , a; j = 1, 2, . . . , b) (4.1)

subject to
a∑

i=1

τi = 0 and

b∑

j=1

βj = 0 (4.2)

The fundamental ANOVA equation for the RCBD resumes to

SST = SStreat + SSblock + SSE (4.3)

where treat denotes the treatment factor and block the blocking variable. Residual SS,
with (a−1)(b−1) degrees of freedom, captures the variance unexplained by the two other
factors. The layout of this design is quite comparable to that of a two-way ANOVA with
one observation per cell: no interaction term is estimable and the design is orthogonal, so
terms can be entered in any order in the model. Note that such an additive formulation
of the response variations is not always possible, especially if some interaction between
blocks and the factor of interest is to be expected, or is discovered when inspecting
residuals vs. fitted values. In this case, a factorial design (Chap. 5 and 6) should be
more appropriate to uncover the interaction effect.
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Let’s consider the following example (Tab. 4-3). A product developer decides to
investigate the effect of four different levels of extrusion pressure on flicks using a RCBD
considering batches of resin as blocks. The data are contained in the file vascgraft.txt
and are shown in the following Table.

Batch of Resin (Block)
PSI 1 2 3 4 5 6 Total

1 90.30 89.20 98.20 93.90 87.40 97.90 556.9
2 92.50 89.50 90.60 94.70 87.00 95.80 550.1
3 85.50 90.80 89.60 86.20 88.00 93.40 533.5
4 82.50 89.50 85.60 87.40 78.90 90.70 514.6

Total 350.8 359.0 364.0 362.2 341.3 377.8 y·· = 2155.1

x <- scan("vascgraft.txt")

PSI.labels <- c(8500,8700,8900,9100)

vasc.graft <- data.frame(PSI=gl(4,6,24),block=gl(6,1,24),x)

vasc.graft.aov <- aov(x~block+PSI,vasc.graft)

Figure 4.1 gives two different pictures of the data. On the left panel, responses have
been averaged over blocks, while on the right, data have been averaged on the treatment.

1 2 3 4

80
85

90
95

Responses averaged over blocks

PSI

(a)

1 2 3 4 5 6

80
85

90
95

Responses averaged over treatments

Blocks

(b)

Figure 4.1: Results of the Vascular Graft Experiment.

If we want to plot both information, we can use a so-called interaction plot, even if
we are not considering interaction between the two factors. Figure 4.2 plots response
as a function of treatment (x-axis) for each block labelled with different color and line
type.

Classical ANOVA results, obtained by issuing summary(vasc.graft.aov)) in the R

shell, are reported in Table 4.1. As can be seen, the effect of treatment (PSI) is highly
significant, and the results clearly argue against the null.
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Figure 4.2: Results of the Vascular Graft Experiment (cont.).

Df Sum Sq Mean Sq F value Pr(>F)

block 5 192.25 38.45 5.25 0.0055
PSI 3 178.17 59.39 8.11 0.0019
Residuals 15 109.89 7.33

Table 4.1: Results for the Model y = µ+ PSIi + blockj .

Ignoring the blocking structure would yield incorrect result, though still significant.
It is always a good practice to check model adequacy after running the ANOVA

model. To do so, we have to check the relation between fitted values and residuals
(homoscedasticity), as well as the normality (of the residuals) hypothesis. Various plots
are reproduced in Figure 4.3, including (standardized and raw) residuals vs. fitted values,
QQ-plot and leverage effect.

opar <- par(mfrow=c(2,2),cex=.8)

plot(vasc.graft.aov)

par(opar)

Handling Missing Values. If some missing value occurs in an RCBD, treatments
are no longer orthogonal to blocks. Two general solutions are available:

• approximate analysis: the missing observation is estimated, and the analysis pro-
ceeds as usual, substracting one degree of freedom to the residual SS;

• exact analysis: it relies on the general regression significance test, that will not be
covered here (please refer to pp. 133–136 of Montgomery’s handbook).
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Figure 4.3: Model checking for the Vascular Graft data.

# we delete the 10th observation

x2 <- x

x2[10] <- NA

vasc.graft2 <- data.frame(PSI=gl(4,6,24),block=gl(6,1,24),x2)

We wish to estimate the missing value, say y10, so that its contribution to error sum
of squares is minimal. This is equivalent to finding ỹ10 satisfying

min
y

a∑

i=1

b∑

j=1

y2ij −
1

b

a∑

i=1




b∑

j=1




2

− 1

a

b∑

j=1

(
a∑

i=1

)2

+
1

ab




a∑

i=1

b∑

j=1

yij




2

Considering that dSSE

dy = 0, we get

ỹ10 =
ay

′

i· + by
′

·j − y
′

··

(a− 1)(b − 1)

and y10 will be imputed a value of 91.08.
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4.3 Latin Square Design

The Latin Square design is another way to include blocking factors in a given design.
This way, we can account for 2 nuisance factors.

Latin squares are arranged by combining two circular permutations of a sequence of
treatment (e.g. {A,B,C,D,E}) on the rows and columns.

The example given by Montgomery on the Rocket Propellant Problem is available
in the file rocket.txt, which can be imported using

rocket <- read.table("rocket.txt",header=T)

Treatment allocation is illustrated in the following table.

Operators
Batch 1 2 3 4 5

1 A B C D E
2 B C D E A
3 C D E A B
4 D E A B C
5 E A B C D

The following command

plot(y~op+batch+treat,rocket)

allows to sequantially inspect different boxplots of y as a function of one of the three
factors.

rocket.lm <- lm(y~factor(op)+factor(batch)+treat,rocket)

anova(rocket.lm)

Because the design is balanced, the order for entering term does not matter. Here are
the results of the ANOVA (Tab. 4.2). We should only interpret the F-value associated
with the treatment effect (treat).

Df Sum Sq Mean Sq F value Pr(>F)

factor(op) 4 150.00 37.50 3.52 0.0404
factor(batch) 4 68.00 17.00 1.59 0.2391
treat 4 330.00 82.50 7.73 0.0025
Residuals 12 128.00 10.67

Table 4.2: Analysis of the Rocket data.

Figure 4.4 is an attempt to resume the structure of the factors effects on the measured
response. As can be seen, a large proportion of overall variability in responses is captured
by the treatment condition, and operator appear to convey much variance than the
blocking factor itself.
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Figure 4.4: Factors effects plot.

4.4 Graeco-Latin Square Design

4.5 Balanced Incomplete Block Designs

Balanced Incomplete Block Designs (BIBD) are a class of randomized block designs
whereby every treatment is not observed for every block present in the experiment. If we
denote by a the number of treatments, and k the maximum number of treatments for each
block (k < a), then a BIBD consists in different arrangement of the

(a
k

)
combinations.

Douglas Montgomery gives a pretty introduction to this class of design, widely used
in educational assessment or clinical trials. For additional development on this topic,
please refer to [?, ?]. Note, however, that in an educational perspective, what is classicaly
refered to a BIBD is not really a BIBD in a formal sense. Indeed, blocks are treated as
factor and factor as blocks (e.g. [?]).

Consider the following example (Tab. 4-21) of a catalyst experiment, in which the
time of reaction for a chemical process is studied as a function of catalyst type adminis-
tered to four different batch of raw material. These batch are considered as the blocking
elements.

Let a be the number of treatments, and b the number of blocks. We consider that
each block contains k treatments, with an overall replication of r times in the design. We
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Block (Batch of Raw Material)
Treatment 1 2 3 4 yi·

1 73 74 – 71 218
2 – 75 67 72 214
3 73 75 68 – 216
4 75 – 72 75 222

y·j 221 224 207 218 870 = y··

thus have N = ar = bk observations, and the number of times each pair of treatments
apperas in the same block is:

λ =
r(k − 1)

a− 1
, λ ∈ {0, 1, 2, . . . }

When a = b, we have a symmetric design. As λ has to be an integer, the space of
admissible solutions can be considerably reduced for some design. For example, the
following constraints: r = 4, t = 4, b = 8, and k = 2, are not possible for a BIB.1

tab.4.21 <- matrix(c(73,NA,73,75,74,75,75,NA,NA,67,68,72,71,72,NA,75),nc=4)

tab.4.21.df <- data.frame(rep=as.vector(tab.4.21),

treat=factor(rep(1:4,4)),

block=factor(rep(1:4,each=4)))

summary(aov(rep~treat+block+Error(block),tab.4.21.df))

Specifying block is required to get a correct estimation of residuals and an adjusted
estimate of treatment effect. Here, the type of catalyst induce a significant main effect.
However, one can also “force” R to use the appropriate SS by using lm() with ordered
effect terms, e.g.

anova(lm(rep~block+treat,tab.4.21.df))

gives the correct treatment effect, adjusted for the blocking factor.
The detailed aov output is reproduced below and, as can be seen, R correctly separates

the total variability into a block stratum and residual random variations.

Error: block

Df Sum Sq Mean Sq

treat 3 55.000 18.333

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

treat 3 22.7500 7.5833 11.667 0.01074 *

Residuals 5 3.2500 0.6500

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

1But, a partially balanced incomplete block design can be used instead.
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This way, we have computed adjusted MS for the catalyst effect. We might be
interested in the adjusted MS for the block effect. This can easily be found using the
appropriate error term, Error(treat), and we get

Error: treat

Df Sum Sq Mean Sq

treat 3 11.6667 3.8889

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

block 3 66.083 22.028 33.889 0.0009528 ***

Residuals 5 3.250 0.650

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

If we want to get both estimates in a single pass, like Minitab, we can wrap the two
calls to the aov() function in a single function with little effort. Table 4.3 summarizes
both estimates (unadjusted and adjusted) and associated p-values.

Effect df MS F p-value

treat 3 3.889
treat (Adj.) 3 7.583 11.667 0.01074
block 3 18.333
block (Adj.) 3 22.028 33.889 0.00095

Table 4.3: Summary of BIB analysis.

Another solution is to use the BIB.test() function located in the agricolae package.
Actually, there is no formula interface in function call, so we have to pass separetly the
blocking factor, th fixed treatment and the response variable.

require(agricolae)

BIB.test(tab.4.21.df$treat,tab.4.21.df$treat,tab.4.21.df$rep,

method="tukey",group=FALSE)

Note. Actually, I did not explore all the functionnalities of this function and its be-
havior (e.g. parameter group=). Further, I cannot get correct result with the above
code!

Tukey pairwise differences (treat factor) can be computed as follow:

tab.4.21.lm <- lm(rep~block+treat,tab.4.21.df)

treat.coef <- tab.4.21.lm$coef[5:7]

# effect for catalyst 4 (baseline) is missing, so we add it

treat.coef <- c(0,treat.coef)

pairwise.diff <- outer(treat.coef,treat.coef,"-")
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Inspecting the output of summary(tab.4.21.lm), we see that the standard error is

estimated to be 0.6982. More generally, SE can be obtained as
√

2k
λt σ̂. The corresponding

Tukey critical value (1− α = 0.95) is given by

crit.val <- qtukey(0.95,4,5)

However, the BIB.test() function directly gives lsd, Tukey or Waller-Duncan tests
for comparing the treatment levels.

Instead of a tabular summary, we may plot the confidence intervals as a function of
each paired comparison (Fig. 4.6, right).

ic.width <- crit.val*0.6982/sqrt(2)

xx <- pairwise.diff[lower.tri(pairwise.diff)]

plot(xx,1:6,xlab="Pairwise Difference

(95% CI)",ylab="",xlim=c(-5,5),pch=19,cex=1.2,axes=F)

axis(1,seq(-5,5))

mtext(c("4-1","4-2","4-3","1-2","1-3","2-3"),side=2,at=1:6,line=2,las=2)

segments(xx-ic.width,1:6,xx+ic.width,1:6,lwd=2)

abline(v=0,lty=2,col="lightgray")

Next, we may be interested in assessing whether this BIB performs better than a
complete randomized design (without blocking). Following [?], we can compute the
relative efficiency as

σ2
CRD

σ2
RCBD

In this case, it happens to be computed as

tab.4.21.lm.crd <- lm(rep~treat,tab.4.21.df)

(summary(tab.4.21.lm.crd)$sig/summary(tab.4.21.lm)$sig)^2

and we get a RE of 13%. Thus, a CRD would require 13% more observations to
obtain the same level of precision as our BIB.

Recovering Interblock Information calls for some tricky manipulation within R. The
best combined estimator can be expressed as τ∗i = α1τ̂i + α2τ̃i: it is linear combination
of the intrablock and interblock estimators, with weights inversely proportional to the
variances of τ̂i and τ̃i. Following Equation 4-45, it can be estimated as

τ∗i =
kQi(σ

2 + kσ2
β) +

(∑b
j=1 nijy·j − krȳ··

)
σ2

(r − λ)σ2 + λa(σ2 + kσ2
β)

i = 1, 2, . . . , a (4.4)

As σ2 and σ2
β are unknown parameters, they are replaced by their estimates. We will

use the error MS from the intrablock analysis, for σ2.
Figure 4.5 (left) shows the observed response for this 4×4 design. OLS fit have been

superimposed for each “random” block. This treillis graphics [?] has been produced
using the following commands:
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require(lattice)

xyplot(rep~treat|block,tab.4.21.df,

aspect="xy",xlab="Catalyst",ylab="Response",

panel=function(x,y) {

panel.xyplot(x,y)

panel.lmline(x,y)

})
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Figure 4.5: The catalyst ex-
periment. Response measured in
each block as a function of the
type of catalyst (1, 2, 3, 4) used.
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Figure 4.6: Tukey 95% simul-
taneaous confidence intervals.

We would obtain the same results if we were to use the lme4 package, which rests in
this case on REML estimation.

require(lme4)

print(tab.4.21.lm <- lmer(rep~treat+(1|block),tab.4.21.df),corr=F)

Now, we get a rather more informative output including variance components esti-
mates together with their standard errors.

Linear mixed-effects model fit by REML

Formula: rep ~ treat + (1 | block)

Data: tab.4.21.df

AIC BIC logLik MLdeviance REMLdeviance

44.22 46.64 -17.11 38.57 34.22

Random effects:

Groups Name Variance Std.Dev.

block (Intercept) 8.00907 2.83003
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Residual 0.65035 0.80644

number of obs: 12, groups: block, 4

Fixed effects:

Estimate Std. Error t value

(Intercept) 74.9704 1.4963 50.11

treat1 -3.5573 0.6973 -5.10

treat2 -3.3541 0.6973 -4.81

treat3 -2.9704 0.6973 -4.26

Should it be of interest to use other linear contrasts for treat, we shall simply remove
the intercept from the previous model.

print(tab.4.21.lm0 <- lmer(rep~-1+treat+(1|block),tab.4.21.df))

However, we can notice in the above output that the intercept term equals 74.97,
which doesn’t correspond to the observed mean when treat=4. In fact, this is the mean
of the predicted means (for the 4th catalyst) across the four blocks. This follows from
the fact that we introduce block as a random effect for which separate intercept have to
be computed ((1|block)).

coef(tab.4.21.lm)[[1]]$‘(Intercept)‘

mean(coef(tab.4.21.lm)[[1]][,1])

Remark. Constructing a BIB is not an easy task. One way to build such a design
is to start with a multifactorial design (most often used as a screening device when
we have multiple factor of interest but want to include only the relevant ones in the
mail trial). Quoting [?], we can build a L122

11 design by selecting the first column (1st
factor), then applying a circular permutation to its elements. The following code is a
quick implementation of such a construction but is not optimized anyway.2

col <- c(1,1,0,1,1,1,0,0,0,1,0)

perm <- function(x) {

s <- length(x)

m <- matrix(nc=s,nr=s)

y <- rep(x,2)

m[,1] <- x

for (i in 2:s) { m[,i] <- y[i:(s+i-1)] }

m

}

col.perm <- perm(col)

bib11 <- rbind(rep(0,11),col.perm)

# check that the design is well balanced

apply(bib11[-1,],1,sum)

apply(bib11,2,sum)

2More efficient algorithms for permutations are available in various R packages (e.g. vegan, sna,
dprep, e1071, gdata, magic).
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With this particular design, we can check that there are exactly 6 factors per block,
and, reciprocally, only 6 blocks are associated with each factor. For reading easiness (at
least from my point of view), we can plot the design matrix rather than displaying it in
a tabular format (Fig. 4.7). This way, it looks like a confusion matrix.

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

Figure 4.7: A BIBD with 10 blocks × 10 factors.

Other examples of block designs analyzed with R are covered in [?] (Chapter 16).
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Chapter 5

Introduction to Factorial Design

5.1 Summary of Chapter 5

Chapter 5 deals with the analysis f balanced two-factors design. When appropriately
used, factorial designs increase design efficiency, and it can be shown that the same
accuracy can be obtained with a minimum of essays compared to separate one-way
experiment. The fundamental anova equation is extended to account for the variability
explained by a second factor and a possible interaction between the two factors. The
concept of interaction is often of primary interest and need to be well understood, both
from a scientific and a statistical point of view.

5.2 The two-factor factorial design

In the general case, the effects model ressembles

yijk = µ+ τi + βj + (τβ)ij + εijk (5.1)

where i, j (i = 1 . . . a, j = 1 . . . b) span the levels of factor A and B, while k stands for
the observation number (k = 1 . . . n). The order in which the abn observations are taken
is selected at random, so this design is said to be a completely randomized design.

In case one or more factor are quantitative, a regression model is even easily for-
malized. Note that if we write down the normal equations related to the above model,
it can be shown that there are a + b + 1 linear dependencies in the system of equa-
tions. As a consequence, the parameters are not uniquely determined and we say that
the model is not directly estimable without imposing some constraints. This happens
to be:

∑a
i=1 τ̂i = 0,

∑b
j=1 β̂j = 0,

∑a
i=1 τ̂βij = 0 (j = 1, 2, . . . , b) and

∑b
j=1 τ̂βij = 0

(i = 1, 2, . . . , a).
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With some algebra, 5.1 can be expressed as a (corrected) total sum of sum of squares:

a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳ···)
2 =

a∑

i=1

b∑

j=1

n∑

k=1

[(ȳi·· − ȳ···) + (ȳ·j· − ȳ···)

+ (ȳij· − ȳi·· − ȳ·j· + ȳ···) + (yijk − ȳij·)]
2

= bn

a∑

i=1

(ȳi·· − ȳ···)
2 + an

b∑

j=1

(ȳ·j· − ȳ···)
2

+ n

a∑

i=1

b∑

j=1

(ȳij· − ȳi·· − ȳ·j· + ȳ···)
2

+
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳij·)
2

(5.2)

Symbolically, this decomposition can also be expressed as:

SST = SSA + SSB + SSAB + SSE (5.3)

and as can be seen from the last component of the right-hand side of Equation 5.2, there
must be at least two replicates (n ≥ 2) to obtain an error sum of squares. As for the
one-way layout, this component will be called the residual or the error term.

Hypotheses testing proceeds in three steps:

• equality of row treatment effects
H0 : τ1 = τ2 = · · · = τa = 0

• equality of column treatment effects
H0 : β1 = β2 = · · · = βb = 0

• no interaction between row and column treatment
H0 : (τβ)ij = 0 for all i, j

Applied to the data found in battery.txt, we can set up a 32 factorial design
(two factors at three levels) very easily. The data consists in a study of the effect of
temperature (◦F) and a design parameter with three possible choices. The aim is to
design a battery for use in a device subjected to extreme variations of temperature.

battery <- read.table("battery.txt",header=TRUE)

battery$Material <- as.factor(battery$Material)

battery$Temperature <- as.factor(battery$Temperature)

summary(battery)

Now, the two-way ANOVA model, including an interaction effect, is computed as
follows:

battery.aov <- aov(Life~Material*Temperature,data=battery)
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Note that Life~Material*Temperature is equivalent to Life~Material+Temperature+

Material*Temperature, where each effect is given explicitely, or Life~.+.^2, where all
factor included in the data frame are included, together with the second-order interac-
tion(s).

Results are obtained using summary(battery.aov), and are printed in Table 5.1. All
three effects are significant, especially the Temperature effect which account for about
50% of the total variability in battery life.

Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10683.72 5341.86 7.91 0.0020
Temperature 2 39118.72 19559.36 28.97 0.0000
Material:Temperature 4 9613.78 2403.44 3.56 0.0186
Residuals 27 18230.75 675.21

Table 5.1: anova table for the 32 battery experiment.

Most of the time, a plot of the averaged response variable will be very useful to gain
insight into the effects displayed in the anova table. In Figure 5.1, we have plotted the
average Life ȳij· as a function of Temperature, for each Material type. Each point in the
graph is thus the mean of 4 observations. We call this an interaction plot.

with(battery, interaction.plot(Temperature,Material,Life,type="b",pch=19,

fixed=T,xlab="Temperature (◦F)",ylab="Average life"))

It can be seen that average life decreases as temperature increases, with Material
type 3 leading to extended battery life compared to the other, especially at higher
temperature, hence the interaction effect.

Another useful plot is the effects plot, which can be obtained with plot.design()

which takes as an argument the same formula as that passed to the aov() function.
Thus,

plot.design(Life~Material*Temperature,data=battery)

gives the picture given in Figure 5.2a. The large Temperature effect is reflected in the
range of battery life variation induced by its manipulation.

Now, we have to follow the same routes as in Chapter 3 and run multiple comparisons
as well as check model adequacy. These are basically the same principles that what we
described pp. 16 and 18, so we don’t go further into details for this chapter. Note,
however, that model checking should be done on each “treatment” (i.e. crossing each
factor level together).

With such a design, Tukey’s HSD are widely appreciated from researchers. Applying
TukeyHSD(battery.aov,which="Material") gives the following results:

Tukey multiple comparisons of means

95% family-wise confidence level
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Figure 5.1: Material type–temperature plot for the battery life experiment.

Fit: aov(formula = Life ~ . + .^2, data = battery)

$Material

diff lwr upr p adj

2-1 25.16667 -1.135677 51.46901 0.0627571

3-1 41.91667 15.614323 68.21901 0.0014162

3-2 16.75000 -9.552344 43.05234 0.2717815

But this not actually what we should compute because the interaction is significant.
Thus the effect of Material depends on which level of Temperature is considered. If we
decide to study the material effect at 70◦F, we get a slightly comparable picture (I do
it by hand as I cannot find a proper R way), but it the right way to compute means
contrast in presence of a significant interaction.

# we compute the three means at Temperature=70◦F

mm <- with(subset(battery, Temperature==70),

aggregate(Life,list(M=Material),mean))

# next the studentized t quantile times the error type (based on pooled SD

# from ANOVA)

val.crit <- qtukey(.95,3,27)*sqrt(unlist(summary(battery.aov))[["Mean Sq4"]]/4)

# finally compare the observed difference of means with the critical value
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Figure 5.2: (a) Effect display. (b) Diagnostic plots.

diff.mm <- c(d.3.1=mm$x[3]-mm$x[1],d.3.2=mm$x[3]-mm$x[2],d.2.1=mm$x[2]-mm$x[1])

names(which(diff.mm > val.crit))

In conclusion, only Material type 3 vs. type 1 and Material type 2 vs. type 1 appear to
be significantly different when Temperature is fixed at 70◦F.

Model adequacy, or residual analysis, is shown in Figure 5.2b: This includes a plot
of residuals or standardized residuals against fitted values, a Q-Q plot, and a plt of
leverage and Cook’s distance. For the two-factor factorial model, residuals are defined
as eijk = yijk − ŷijk. Since ŷijk = ȳij· (we average over observations in the ijth cell), the
above equation is equivalent to

eijk = yijk − ȳij· (5.4)

Examining the plot of residuals vs. fitted values, we can see that a larger variance
is associated to larger fitted value, and two observations (2 and 4) are highlighted in
Figure 5.2b (top left panel); in other words, the 15◦F-material type 1 cell contains
extreme residuals that account for the inequality of variance. This is easily seen using
a command like with(battery, tapply(Life,list(Material,Temperature),var)), which
gives

15 70 125

1 2056.9167 556.9167 721.0000

2 656.2500 160.2500 371.0000

3 674.6667 508.2500 371.6667

We could also imagine using a Model without interaction, where appropriate. This
resumes to removing the (τβ)ij term in Model 5.1. Applied to the battery life data,
summary(battery.aov2 <- aov(Life~Material+Temperature,data=battery)) leads to the
following results:
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Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10684 5342 5.9472 0.006515 **

Temperature 2 39119 19559 21.7759 1.239e-06 ***

Residuals 31 27845 898

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Obviously, the two main effets are still highly significant. However, residual analysis of
this “reduced” model (Fig. 5.3) shows that a no interaction model is not appropriate.
In this figure, we plot the ȳij· against fitted values for the no interaction model, ŷijk =
ȳi·· + ȳ·j· − ȳ···. This can be viewed as the difference between the observed cell means
and the estimated cell means assuming no interaction; any pattern in this plot is thus
suggestive of the presence of an interaction.

mm2 <- with(battery, tapply(Life,list(Material,Temperature),mean))

mm2 <- as.vector(mm2)

plot(fitted(battery.aov2)[seq(1,36,by=4)],mm2-fitted(battery.aov2)[seq(1,36,by=4)],

xlab="",ylab=expression(bar(y)[ij.]-hat(y)[ijk]),

pch=19,axes=FALSE,ylim=c(-30,30))

axis(1,at=seq(0,200,by=50),pos=0)

text(155,4,expression(hat(y)[ijk]),pos=4)

axis(2,at=seq(-30,30,by=10),las=1)

y i
j.

−
ŷ i

jk

50 100 150

ŷijk

−30

−20

−10

0

10

20

30

Figure 5.3: Plot of ȳij· vs. ŷijk.

There is a clear tendency toward alternated fitted values differences with increasing
predicted values, ȳij·. To highlight that pattern, we can superimpose a loess line on the
above plot.

yy <- order(fitted(battery.aov2)[seq(1,36,by=4)])
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xx.fit <- fitted(battery.aov2)[seq(1,36,by=4)]

yy.fit <- mm2-fitted(battery.aov2)[seq(1,36,by=4)]

lines(xx.fit[yy],predict(loess(yy.fit[yy]~xx.fit[yy])),col="lightgray",lwd=2)

Now, suppose that we have only a single replicate per combination of factor. If we
turn back to Equation 5.2, we see that the error term is not estimable because it is now
confounded with the interaction term. The corresponding expected mean square proved
to be

σ2 +

∑∑
(τβ)2ij

(a− 1)(b − 1)
.

As a consequence, no tests on main effects can be carried out unless the interaction effect
is zero, i.e. (τβ)ij = 0. If, after removing this term, the effects model is correct, then
the residual MS above is an unbiased estimator of σ2.

There is a test for determining whether interaction is present or not. The Tukey’s
non-additivity, or curvature, test [?] consists in separating the residual SS into a single
degree of freedom component due to non-additivity, or interaction, and a component
for error with (a − 1)(b − 1) − 1 degrees of freedom. An F test of SSN

SSE/[(a−1)(b−1)−1] ,

with 1 and (a− 1)(b − 1)− 1 degrees of freedom, at the α level, allow to reject the null
hypothesis of no interaction.

An example of this procedure is shown using impurity.txtwhich contains data from
a study of a chemical product and its impurities resulting from two factors—pressure
and temperature.

impurity <- read.table("impurity.txt",header=TRUE)

impurity$Temperature <- as.factor(impurity$Temperature)

impurity$Pressure <- as.factor(impurity$Pressure)

Applying a full factorial model with interaction gives no tests for main effects as
expected. The command used to display is rather simple:
summary(aov(N~Temperature*Pressure,impurity))

Df Sum Sq Mean Sq

Temperature 2 23.333 11.667

Pressure 4 11.600 2.900

Temperature:Pressure 8 2.000 0.250

The idea is thus to decompose the SS of the Temperature×Pressure term into two
additional terms. Although we can do it ourselves, there is an interesting function in the
alr3 package which provides both a graphical assessment of the presence of a potential
interaction as well as the formal Tukey’s test. In fact, it amounts to be a test on a
quadratic term added to the model y ∼ A+B.

library(alr3)

residual.plots(lm(N~Temperature+Pressure,impurity))

As a result, we get a test statistic of 0.602 with a p-value of 0.547. Montgomery provides
an F test, as described in the procedure above, which equals 0.36. This is exactly 0.6022
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because residual.plots() returns a t-test. As a side-effect, this function also a plot
studentized residuals against fitted values, with the fitted quadratic term (dotted line),
as shown in Figure 5.4 (lower left panel).
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Figure 5.4: Curvature test for the impurity data.

5.3 General factorial design, response curves and surfaces

The model described in the preceding section can be generalized to any number of fixed
effects, and there will be as much second order interaction terms as there are factors,
plus third order interaction term(s).

As an example of a three-factors design, we can consider the data in the bottling.txt
file. In this study, a soft drink bottler is interested in obtaining more uniform fill heights
in the bottles produced by his manufacturing process. The process engineer can con-
trol three variables during the filling process: the percent carbonation (A), the oprating
pressure in the filler (B), and the bottles produced per minute on the line speed (C).
The factorial model can be written as

y ∼ A+B + C +AB +AC +BC +ABC

where y is the response variable, i.e. the fill height deviation.
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We happen to set up the data as follows:

bottling <- read.table("bottling.txt",header=TRUE,

colClasses=c("numeric",rep("factor",3)))

summary(bottling)

and brief summary plot is shown in Figure 5.5. Commands used for this display are
rather simple, and we could probably do better.

opar <- par(mfrow=c(2,2),cex=.8)

boxplot(Deviation~.,data=bottling,las=2,cex.axis=.8,ylab="Deviation")

abline(h=0,lty=2)

par(las=1)

mm <- with(bottling, tapply(Deviation,Carbonation,mean))

ss <- with(bottling, tapply(Deviation,Carbonation,sd))

bp <- barplot(mm,xlab="Carbonation",ylab="Deviation",ylim=c(-2,9))

arrows(bp,mm-ss/sqrt(4),bp,mm+ss/sqrt(4),code=3,angle=90,length=.1)

with(bottling, interaction.plot(Carbonation,Pressure,Deviation,type="b"))

with(bottling, interaction.plot(Carbonation,Speed,Deviation,type="b"))

par(opar)

It is used here to highlight the different possible viewings of this highly structured
dataset. Top left panel is a plot of each “cell”, i.e. each combination of the three
factors, with n = 4 observations per cell. This is rather uninformative as we are mainly
interested in the effect of the factors themselves, as well as their potential interaction
of the variation of the response variable. Top right panel presents aggregated data on
B and C: The means observed, together with their standard errors, are plotted against
the three level of Carbonation. Finally, the two lower panels are interaction plot, but
only display two factors at the same time, thus we are still lacking a complete overview
of the main and interaction effects.

The three-way anova model is summarized in Table 5.2.

summary(bottling.aov <- aov(Deviation~.^3,bottling))

Df Sum Sq Mean Sq F value Pr(>F)

Carbonation 2 252.75 126.37 178.41 0.0000
Pressure 1 45.37 45.37 64.06 0.0000
Speed 1 22.04 22.04 31.12 0.0001
Carbonation:Pressure 2 5.25 2.63 3.71 0.0558
Carbonation:Speed 2 0.58 0.29 0.41 0.6715
Pressure:Speed 1 1.04 1.04 1.47 0.2486
Carbonation:Pressure:Speed 2 1.08 0.54 0.76 0.4869
Residuals 12 8.50 0.71

Table 5.2: Results of the saturated model for the bottling data.
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Figure 5.5: The bottling dataset.

As can be seen from the anova table, main effects are all significant, while none of the
four interaction effects are. Note, however, that the Carbonation×Pressure interaction
is marginally significant but exceeds the conventional 5% significance level. Such results
suggest that we may remove the interaction terms, which is done in the next step (Note
that we could have used the update() command which allows to quickly update a given
model, but in this case it is rather borrying to remove all interaction effects).

bottling.aov2 <- aov(Deviation~.,bottling)

anova(bottling.aov2,bottling.aov)

Table 5.3 show the new p-values associated with the F tests on the main effects only. The
last R command in the above code allows to formally test for the benefit of including
the interaction terms in the model. As the F -test is non-significant (p = 0.225), we
could undoubetly remove these terms. We should have been able to suppose that no
interaction are present by simply looking at the interaction plots shown in Figure 5.5.
In each case, both line are about to be strictly paralell, which is implied by the absence
of interaction in the factorial model.

Now, if we turn back to the battery life experiment, what if we include a quadratic
term for the quantitative variable, Temperature?

battery$Temperature.num <- as.numeric(as.character(battery$Temperature))
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Df Sum Sq Mean Sq F value Pr(>F)

Carbonation 2 252.75 126.37 145.89 0.0000
Pressure 1 45.37 45.37 52.38 0.0000
Speed 1 22.04 22.04 25.45 0.0001
Residuals 19 16.46 0.87

Table 5.3: Results of the reduced model for the bottling data, showing only
significant main effects.

battery.aov3 <- aov(Life~Material+Temperature.num+I(Temperature.num^2)

+Material:Temperature.num+Material:I(Temperature.num^2),

data=battery)

summary(battery.aov3)

Note the use of as.character conversion to get a proper interpretation of numerical values
of the Temperature factor. If instead we use directly as.numeric(battery$Temperature),
we would get a 1, 2, 3 coding which is not what we really want, since we are planning to
predict actual values of y (see below).

This time, the model can be written symbolically as

y ∼ A+B +B2 +AB +AB2

with B denoting the Temperature factor. Summary of the results is shown in Table 5.4.

Df Sum Sq Mean Sq F value Pr(>F)

Material 2 10683.72 5341.86 7.91 0.0020
Temperature.num 1 39042.67 39042.67 57.82 0.0000
I(Temperature.num^2) 1 76.06 76.06 0.11 0.7398
Material:Temperature.num 2 2315.08 1157.54 1.71 0.1991
Material:I(Temperature.num^2) 2 7298.69 3649.35 5.40 0.0106
Residuals 27 18230.75 675.21

Table 5.4: Fitting the battery life data with an additional quadratic effect of
Temperature.

If we look at the predicted values for this model, the results shown in Figure 5.6 are
more in agreement with the intuitive idea that there is an optimal Temperature that
depends of Material type (cf. the significant AB2 interaction effect in Table 5.4), and
for which battery life reaches its maximum.

new <- data.frame(Temperature.num=rep(seq(15,125,by=5),3),Material=gl(3,23))

new$fit <- predict(battery.aov3,new)

opar <- par(las=1)

# we first plot the fitted values
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with(new, interaction.plot(Temperature.num,Material,fit,legend=FALSE,

xlab="Temperature",ylab="Life",ylim=c(20,190)))

txt.leg <- paste("Material type",1:3)

text(5:7,new$fit[new$Temperature.num==c(45,55,65)]-c(3,3,-20),txt.leg,pos=1)

# next the observed values

points(rep(c(1,15,23),each=12),battery$Life,pch=19)

par(opar)

Note that to get a smooth curve, we have to interpolate the predictions over all the
domain of temperature, when it is considered as a numeric factor. This is done using
the statement

50

100

150

Temperature

Li
fe

15 30 45 60 75 90 105 120

Material type 1

Material type 2

Material type 3

Figure 5.6: Model fit for the battery life experiment, including non-linear effect
of temperature.

When more than one factor are quantitative, we may use a response surface to model
the relationship between the response variable and the design factor. This is illustrated
using the data contained in toollife.txt, which describes results gathered through
a study of the effect of cutting speed (A) and tool angle (B) on the effective life of a
cutting tool. Model fitted to the data is of the following form

y ∼ A+B +A2 +B2 +AB2 +A2B +AB

We are mainly interested in some of the quadratic terms, both quadratic and linear effects
are crossed in the interaction terms, to preserve the hierarchical principle (inclusion of
high-order term should be followed by inclusion of the lower-order terms that compose
it), as in the preceding example.

tool <- read.table("toollife.txt",header=TRUE)

tool.lm <- lm(Life~Angle*Speed+I(Angle^2)*I(Speed^2)+Angle:I(Speed^2)
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+I(Angle^2):Speed,tool)

tmp.angle <- seq(15,25,by=.1)

tmp.speed <- seq(125,175,by=.5)

tmp <- list(Angle=tmp.angle,Speed=tmp.speed)

new <- expand.grid(tmp)

new$fit <- c(predict(tool.lm,new))

Partial output is reproduced below. Note that these are sequential sum of squares so
that they are orthogonal (because of the structure of the 32 design itself).

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.068e+03 7.022e+02 -1.521 0.1626

Angle 1.363e+02 7.261e+01 1.877 0.0932 .

Speed 1.448e+01 9.503e+00 1.524 0.1619

I(Angle^2) -4.080e+00 1.810e+00 -2.254 0.0507 .

I(Speed^2) -4.960e-02 3.164e-02 -1.568 0.1514

Angle:Speed -1.864e+00 9.827e-01 -1.897 0.0903 .

I(Angle^2):I(Speed^2) -1.920e-04 8.158e-05 -2.353 0.0431 *

Angle:I(Speed^2) 6.400e-03 3.272e-03 1.956 0.0822 .

Speed:I(Angle^2) 5.600e-02 2.450e-02 2.285 0.0481 *

Rather than interpreting these results, we are mainly interested in the way we can
convey this information in an informative graphical display. To this end, we may plot
the fitted values against both continuous predictor values, after interpolation. This is
called a contour plot. Figure 5.7 has been produced using the function contourplot()

of the lattice package.

require(lattice)

contourplot(fit~Angle*Speed,data=new,cuts=8,region=T,col.regions=gray(7:16/16))

5.4 Blocking in a factorial design

Until now, we have only discussed factorial designs for completely randomized exper-
iment. As already discussed in Chapter 4, such approach have to be avoided when
possible nuisance factors that can’t be controlled are present. The idea is now to run a
single replicate of a complete factorial experiment within each block. This leads to the
model

yijk = µ+ τi + βij + (τβ)ij + δk + εijk (5.5)

with the same notation as those of Model 5.1. Now, we have included an effect for the
kth block, but we assume that interaction between blocks and treatment is negligible
(as in the rcbd). Interaction terms, (τδ)ik, (βδ)jk, and (τβδ)ijk, are thus confounded
within the error term.

The intensity.txt file contains data on an experiment aiming at improvinf the
ability to detect targets on a radar scope. Twho factors were considered, namely the
amount of background noise (“ground clutter”) on the scope and the type of filter placed
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Figure 5.7: Contour plot for the cutting tool study.

over the screen. They are considered as fixed effects. Because of operator availability
and varying degree of knowledge, it is convenient to select an operator and keep him
at the scope until all the necessary runs have been made. They will be considered as
blocks. We have thus 3× 2 treatment combinations arranged in a randomized complete
block. Data are summarized in Figure 5.8.

intensity <- read.table("intensity.txt",header=TRUE,

colClasses=c("numeric",rep("factor",3)))

require(lattice)

xyplot(Intensity~Ground|Operator,data=intensity,groups=Filter,

panel=function(x,y,...){

subs <- list(...)$subscripts

panel.xyplot(x,y,pch=c(1,19),...)

panel.superpose(x,y,panel.groups="panel.lmline",lty=c(1,2),...)

},key=list(text=list(lab=as.character(1:2)),lines=list(lty=1:2,col=1),

corner=c(1,.95),title="Filter Type",cex.title=.8),col=1)

We also fit an OLS line separetely for each Filter type and each operator, to better
appreciate visually the pattern of response. As can be seen, there is a notable variabil-
ity between individual slopes and intercept. Blocking is thus a good way to uncover
operator’s intrinsic effect.

To apply the anova model, we basically follow the steps explained in Chapter 4 and
specify blocks as a separate strata using the Error() option.

intensity.aov <- aov(Intensity~Ground*Filter+Error(Operator),intensity)

summary(intensity.aov)

In Table 5.5, we see that R does not display the Blocks effects when we use the summary()
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Figure 5.8: The intensity data.

command. To obtain SS specific to Blocks, we rather call directly the aov object, like
intensity.aov at the R command prompt.

Call:

aov(formula = Intensity ~ Ground * Filter + Error(Operator),

data = intensity)

Grand Mean: 94.91667

Stratum 1: Operator

Terms:

Residuals

Sum of Squares 402.1667

Deg. of Freedom 3

Residual standard error: 11.57824

(...)

We discarded the rest of the output which contains stratum 2 SS already included in
Table 5.5. What should be noted is that the blocking factor SS is rather large compared
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to other main effects SS (e.g., Ground, 335.58) or error term (166.33). This confirms our
intuitive idea based on the inspection of Figure 5.8 that there are large inter-individual
variation with respect to the response variable. Computing SS for the blocking factor
follows from the above formulation (Equation 5.5) and it can be shown that

SSblocks =
1

ab

n∑

k=1

y2
··k −

y2
···

abn
(5.6)

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 402.17 134.06
Ground 2 335.58 167.79 15.13 0.0003
Filter 1 1066.67 1066.67 96.19 0.0000
Ground:Filter 2 77.08 38.54 3.48 0.0575
Residuals 15 166.33 11.09

Table 5.5: Results of the anova model applied to the intensity data.
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Chapter 6

The 2
k Factorial Design

6.1 Summary of Chapter 6

6.2 The 2
2 design

The 22 design is the simpler design that belong to the general family of the 2k design.
We consider two factors, A and B, with two levels each which can be tought of as “low”
and “high” levels. The experiment may be replicated a number of times, say k, and in
this case we have 2× 2× k trials or runs, yielding a completely randomized experiment.

Suppose that we are interesting in investigating the effect of the concentration of the
reactant and the amount of the catalyst on the conversion (yield) in a chemical process,
with three replicates. The objective is to study how reactant concentration (15 or 25%)
and the catalyst (1 or 2 pounds) impact yield (yield.txt). Results for the different
treatment combinations of the above experiment are summarized in Figure 6.2, where a
“+” sign means the high level and a “−” sign means the corresponding low level.

The average effect of a factor is defined as the change in response produced by a
change in the level of that factor averaged over the levels of the other factors. In the
preceding figure, the symbols (1), a, b, and ab represent the total of all n replicates taken
at the treatment combination. The effect of A at the low level of B is then defined as
[a− (1)]/n, and the effect of A at the high level of B as [ab− b]/n. The average of these
two quantities yields the main effect of A:

A =
1

2n

{
[ab− b] + [a− (1)]

}

=
1

2n
[ab+ a− b− (1)]. (6.1)

Likewise, for B, we have:

B =
1

2n

{
[ab− a] + [b− (1)]

}

=
1

2n
[ab+ b− a− (1)]; (6.2)
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Figure 6.1: Treatment combinations in the 22 design.

and we define the interaction effect AB as the average difference between the effect of
A at the high level of B and the effect of A at the low level of B:

AB =
1

2n

{
[ab− b]− [a− (1)]

}

=
1

2n
[ab+ (1)− a− b]. (6.3)

As an alternative, one may consider that the effect of A can be computed as

A = ȳA+ − ȳA−

=
ab+ a

2n
− b+ (1)

2n

=
1

2n
[ab+ a− b− (1)], (6.4)

which is exactly the results of 6.1. The same applies for the computation of the effect
of B and AB. Numerically, we have:

A =
1

2× 3
(90 + 100− 60− 80) = 8.33,

or using R:

yield <- read.table("yield.txt",header=T)

attach(yield)

rm(yield)

yield.sums <- aggregate(yield,list(reactant=reactant,catalyst=catalyst),sum)
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which gives all necessary information:

reactant catalyst x

1 high high 90

2 low high 60

3 high low 100

4 low low 80

It should be noted that the effect of A is positive which suggests that increasing A from
the low level (15%) to the high level (25%) will increase the yield. The reverse would
apply for B, whereas the interaction effect appears rather limited.

The ANOVA Model and contrasts formulation. An analysis of variance will help
to estimate the direction and magnitude of the factor effects. We already showed that a
contrast is used when estimating A, namely ab+ a− b− (1) (Eq. 6.1). This contrast is
called the total effect of A. All three contrasts derived above are orthogonal. As the sum
of squares for any contrast is equal to the contrast squared and divided by the number
of observations in each total in the contrast times the SS of the contrast coefficients
(Chapter 3), we have: 




SSA = [ab+a−b−(1)]2

4n

SSB = [ab+b−a−(1)]2

4n

SSAB = [ab+(1)−a−b]2

4n

(6.5)

The total SS has 4n− 1 degrees of freedom and it is found in the usual way, that is

SST

2∑

i=1

2∑

j=1

2∑

k=1

y2ijk −
y2
···

4n
, (6.6)

whereas the error sum of squares, with 4(n − 1) degrees of freedom, is SSE = SST −
SSA − SSB − SSAB .

The treatment combinations may be written as

Effects (1) a b ab

A −1 +1 −1 +1
B −1 −1 +1 +1
AB +1 −1 −1 +1

and this order is refered to as Yates’s order . Since all contrasts are orthogonal, the 22 Frank Yates

(1902–1994)
worked on
sample
survey design
and analysis.
He is also the
author of a
book on the
design and
analysis of
factorial
experiments.

(and all 2k designs) is an orthogonal design.

summary(aov(yield~reactant*catalyst))

From Table 6.1, we can verify that both main effects are significant but the interaction
term, AB, is not.
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Table 6.1: Analysis of variance table for the “yield” experiment.

Df Sum Sq Mean Sq F value Pr(>F)

reactant 1 208.33 208.33 53.19 0.0001
catalyst 1 75.00 75.00 19.15 0.0024
reactant:catalyst 1 8.33 8.33 2.13 0.1828
Residuals 8 31.33 3.92

The Regression Model. The coefficients estimated from a regression model (see
below) yield the following prediction equation:

ŷ = 18.333 + 0.833xreactant − 5.000xcatalyst ,

where xreactant and xcatalyst refer to the values taken by the two factors. Here, factors
levels are treated with their corresponding numerical values (1/2 for catalyst, 15/25 for
reactant), but the ANOVA table would remain the same whatever the values we assign
to their levels. However, the model parameters depend on the unit of measurement. In
the next R script we convert the binary variables to ordinal variables, with adequate
values. Note that the somewhat tricky manipulation ensures that the level are correctly
mapped to their numeric value.

reactant.num <- reactant

levels(reactant.num) <- c(25,15)

reactant.num <- as.numeric(as.character(reactant.num))

catalyst.num <- catalyst

levels(catalyst.num) <- c(2,1)

catalyst.num <- as.numeric(as.character(catalyst.num))

yield.lm <- lm(yield~reactant.num+catalyst.num)

yield.lm ## gives the coefficients of the LM

Figure 6.2 shows the response surface and a contour plot of the fitted response as a
function of reactant and catalyst values. Because we deal with a first-order model, which
includes only the main effects, the fitted response surface is a plane. Such a response
surface is used to find a direction of potential improvement for a process, although as
will be seen in Chapter 11, the method of steepest ascent constitutes a more formal way
to do so.

s3d <- scatterplot3d(reactant.num,catalyst.num,yield,type="n",

angle=135,scale.y=1,xlab="Reactant",ylab="Catalyst")

s3d$plane3d(yield.lm,lty.box="solid",col="darkgray")

tmp <- list(reactant.num=seq(15,25,by=.5),catalyst.num=seq(1,2,by=.1))

new.data <- expand.grid(tmp)

new.data$fit <- predict(yield.lm,new.data)

contourplot(fit~reactant.num+catalyst.num,new.data,xlab="Reactant",

ylab="Catalyst")
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Figure 6.2: Response surface plot for the yield data.

6.3 The 2
3 design

If we now consider three factors, A, B, and C, the design is called a 23 factorial design.
There are then eight treatment combinations that can be displayed as a cube (Figure 6.3)
and are refered to as the design matrix. There are seven degrees of freedom between the
eight treatment combinations in the 23 design: Three DF are associated with each main
effect, four DF are associated with interaction terms (three second-order interactions
and one third-order).

High

Low

Low High

–

+

+–

F
a
c
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(a) Geometric view

Factor
Run A B C

1 − − −

2 + − −

3 − + −

4 + + −

5 − − +
6 + − +
7 − + +
8 + + +

(b) Design matrix

Figure 6.3: Treatment combinations in the 23 design.
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The effect of A when B and C are at the low level is [a− (1)]/n. When B is at the
high level and C at its low level, it is [ab− b]/n. The effect of A when C is at the high
level and B at the low level is [ac − c]/n. Finally, when both B and C are at the high
level, the effect of A is [abc− bc]/n. Thus, the average effect of A is:

A =
1

4n

[
a− (1) + ab− b+ ac− c+ abc− bc

]
. (6.7)

This can found as a contrast between the four treatment combinations in the right face
of the cube in Figure 6.4: The effect of A is simply the average of the four runs where A
is at the high level (ȳA+) minus the average of the four runs where A is at the low level
(ȳA−), or

A = ȳA+ − ȳA−

=
a+ ab+ ac+ abc

4n
− (1) + b+ c+ bc

4n
. (6.8)

The effect for B and C are computed in a similar manner.

A B C

(a) Main effects

AB AC BC

(b) Two-factor interaction

Figure 6.4: Geometric presentation of contrasts. In each case, high levels are
highlighted in blue, low levels in red.

The two-factor interaction effects are also computed easily since they reflect the
difference between the average of the effects of one factor at the two levels of the other
factor. By convention, one-half of this difference is called e.g. the AB interaction:

AB =

[
abc− bc+ ab− b− ac+ c− a+ (1)

]

4n
(6.9)
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or, equivalently,

AB =

[
abc+ ab+ c+ (1)

]

4n
−
[
bc+ b+ ac+ a

]

4n
. (6.10)

Finally, the ABC interaction is defined as the average difference between the AB
interactions for the two different levels of C, that is

ABC =
1

4n

{
[abc− bc]− [ac− c]− [ab− b] + [a− (1)]

}

=
1

4n

[
abc− bc− ac+ c− ab+ b+ a− (1)

]
. (6.11)

Again, all preceding equations reflect the contrast associated with the estimation of
each effect. From these contrasts, we can expand a table of “+” (high level) and “−” (low
level) as shown in Table 6.2. Once the signs for the main effects have been established,
the remaining effects may be obtained by multiplying the appropriate columns, row by
row. Table 6.2 has a number of interesting properties: (1) Except for column I, every
column has an equal number of plus and minus signs; (2) The sum of the products of
the signs in any two columns is zero (due to orthogonality); (3) Column I multiplied
times any column leaves that column unchanged because I is an identity element ; (4)
The product of any two columns yields a column in the table. For example, A×B = AB
and AB ×B = AB2 = A.

Finally, sum of squares for the effects are now simply defined as

SS =
(Contrast)2

8n
.

Table 6.2: Algebric signs for calculating effects in the 23 design.

Treatment
combination

Factorial Effect

I A B AB C AC BC ABC

(1) + − − + − + + −
a + − − + − + + −
b + − − + − + + −
ab + − − + − + + −
c + − − + − + + −
ac + − − + − + + −
bc + − − + − + + −
abc + − − + − + + −

The “plasma etch” experiment (plasma.txt) is a 23 design used to develop a nitride
etch process on a single-wafer plasma etching tool. The design factor are the gap between
the electrodes, the gas flow (C2F6 is used a the reactant gas), and the RF power applied
to the cathode. Each factor is run at two levels, and the design is replicated twice.

The data file may be loaded in the usual way:
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plasma <- read.table("plasma.txt",header=TRUE)

plasma

Data are shown below, before transforming them in an appropriate R data.frame.

Run A B C R1 R2

1 1 -1 -1 -1 550 604

2 2 1 -1 -1 669 650

3 3 -1 1 -1 633 601

4 4 1 1 -1 642 635

5 5 -1 -1 1 1037 1052

6 6 1 -1 1 749 868

7 7 -1 1 1 1075 1063

8 8 1 1 1 729 860

Before applying the ANOVA model, we need to switch to R “long” format, as pro-
posed below:

plasma.df <- data.frame(etch=c(plasma$R1,plasma$R2),

rbind(plasma[,2:4],plasma[,2:4]))

plasma.df[,2:4] <- lapply(plasma.df[,2:4],factor)

Next, we simply use the aov() function to estimate all main effects and all interactions
(Table 6.3):

plasma.df.aov <- aov(etch~A*B*C, data=plasma.df)

summary(plasma.df.aov)

Table 6.3 shows that the effect of A, C and their two-way interaction are significant.
None of the other effects appears to be significant at the usual 5% level. The contribution
of each effect may easily computed from their respective sum of squares.

Table 6.3: ANOVA table for the “plasma etch” experiment.

Df Sum Sq Mean Sq F value Pr(>F)

A 1 41310.56 41310.56 18.34 0.0027
B 1 217.56 217.56 0.10 0.7639
C 1 374850.06 374850.06 166.41 0.0000
A:B 1 2475.06 2475.06 1.10 0.3252
A:C 1 94402.56 94402.56 41.91 0.0002
B:C 1 18.06 18.06 0.01 0.9308
A:B:C 1 126.56 126.56 0.06 0.8186
Residuals 8 18020.50 2252.56

To compute the response surface, we need to recode the factor with their correspond-
ing numerical values, which are given below:
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Low (−1) High (+1)

A (Gap, cm) 0.80 1.20
B (C2F6 flow, SCCM) 125 200
C (Power, W) 275 325

This is easily done using, e.g.:

plasma.num.df <- plasma.df

levels(plasma.num.df$A) <- c(0.8,1.2)

levels(plasma.num.df$C) <- c(275,325)

plasma.num.df$A <- as.numeric(as.character(plasma.num.df$A))

plasma.num.df$C <- as.numeric(as.character(plasma.num.df$C))

plasma.num.df.lm <- lm(etch~A*C, plasma.num.df)

Next, we proceeded as before and store in a new data.frame values for which we
want to compute predictions from the above regression model.

tmp <- list(C=seq(275,325,by=1),A=seq(0.8,1.2,by=.1))

new.data <- expand.grid(tmp)

new.data$fit <- predict(plasma.num.df.lm, new.data)

require(scatterplot3d)

s3d <- scatterplot3d(plasma.num.df$A,plasma.num.df$C,

plasma.num.df$etch,type="n",

angle=135,scale.y=1,xlab="Gap",ylab="Power")

s3d$plane3d(plasma.num.df.lm,lty.box="solid",col="darkgray")
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Chapter 7

Blocking and Confounding in the
2
k Factorial Design
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Chapter 8

Two-Level Fractional Factorial
Designs

8.1 Summary of Chapter 8

Chapter 8 is another extension of the 2k factorial design where ones aims at limiting
the number of runs needed to study a large number of two-level factors. For example, a
complete replicate of a 26 design requires 64 runs, where only 6 out of the 63 degrees of
freedom correspond to main effects. If we are willing to assume that certain high-order
interaction terms are negligible, we can run only a fraction of a complete factorial design.
This kind of design is maily used in screening experiments where lot of factors are of
interest and we want to determine which ones to include in a future study because of
their larger effects.

8.2 The one-half fraction of the 2
k design

Let’s say we want to study 3 factors but we cannot afford to runs all 8 treatment
combinations. Using one-half fraction, we now have 23−1 = 4 treatment combinations,
e.g. a, b, c, and abc. Practically, in Table 8.1 we select only treatment combinations for
which the generator ABC has a plus sign.

63



Dec
em

be
r 2

, 2
01

2

Draf
t V

ers
ion

Table 8.1: The 23 factorial design. The 23−1 is formed by considering only the
upper part of this design.

Treatment
combination

Factorial Effect

I A B C AB AC BC ABC

a + + − − − − + +
b + − + − − + − +
c + − − + + − − +
abc + + + + + + + +
ab + + + − + − − −
ac + + − + − + − −
bc + − + + − − + −
(1) + − − − + + + −

a

b

c

abc

(a) Principal fraction, I = +ABC.

A

B

C

(1)

ab

bc

ac

(b) Alternate fraction, I = −ABC.

Figure 8.1: The two one-half fractions of the 23 design.
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Chapter 9

Three-Level and Mixed-Level
Factorial and Fractional Factorial
Designs
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Chapter 10

Fitting Regression Models

10.1 Summary of Chapter 10

Chapter 10 offers a gentle introduction to regression analysis in simple designs. The
multiple linear regression model is detailed in its scalar and matrix form, and it is shown
how unbiased estimator for the regression coefficients and the residual variance might
be obtained when solving the least squares normal equations. Some illustrations are
provided to make the connection with the analysis of designed experiments. Finally,
model diagnostics and the assessment of goodness of fit are presented.

10.2 Linear Regression Models

When we are facing a situation with one dependent variable or response y that depends
on k independent or regression variables, then we can postulate a given relationship
relating these variables, though in most cases the true functional relationship between
y and x1, x2, . . . , xk is unknown. The idea is to fit an empirical model, that is a linear
regression model in this particular settingwhich might take the form:

y = β0 + β1x1 + β2x2 + ε (10.1)

if we consider two regressors, x1 and x2. The β’s are called regression coefficients, and
the model describes an hyperplane in a k dimensional space (here, k = 2). We could
also consider adding an interaction term between x1 and x2 so that the previous model
becomes

y = β0 + β1x1 + β2x2 + β12x1x2 + ε.

A second-order response surface might be represented as follows:

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε;

this model is still linear in its parameters (after appropriate substitution).
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10.2.1 Parameters estimation

The method of least squares (OLS) is generally used to estimate the regression coeffi-
cients. Let assume that the errors are gaussian i.i.d. such E(ε) = 0 and V(ε) = σ2. The
previous model equation 10.1 can be rewritten as:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

= β0 +

k∑

j=1

βjxij + εi, i = 1, 2, . . . , n (10.2)

The OLS solution minimizes the sum of the squared errors, that is

L =

n∑

i=1

ε2i =

n∑

i=1


yi − β0 −

k∑

j=1

βjxij




2

. (10.3)

L has to be minimized with respect to β0, β1, . . . , βk, which yields the so-called least
squares normal equations. Using matrix notation, Equation 10.2 may be written as

y = Xβ + ε

where

y =




y1
y2
...
yn


 , X =




1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

...
1 xn1 xn2 · · · xnk


 , β =




β0
β1
...
βk


 and ε =




ε1
ε2
...
εn




We want to find the vector β̂ that minimizes

L =

n∑

i=1

ε2i = ε′ε = (y −Xβ)′(y −Xβ),

which can also be expressed as

L = y′y − β′X′y − y′Xβ + β′X′Xβ

= y′y − 2β′X′y + β′X′Xβ. (10.4)

The OLS estimators must satisfy

∂L

∂β

∣∣∣∣
β̂

= −2X′y + 2X′Xβ̂ = 0

which simplifies to X′Xβ̂ = X′y. This is the matrix form of the aforementioned normal
equations, and the least squares estimator of β is

β̂ = (X′X)−1X′y (10.5)
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and the normal equations read:




n

n∑

i=1

xi1

n∑

i=1

xi2 · · ·
n∑

i=1

xik

n∑

i=1

xi1

n∑

i=1

x2i1

n∑

i=1

xi1xi2 · · ·
n∑

i=1

xi1xik

...
...

...
...

n∑

i=1

xik

n∑

i=1

xikxi1

n∑

i=1

xikxi2 · · ·
n∑

i=1

x2ik







β̂0
β̂1
...

β̂k


 =




n∑

i=1

yi

n∑

i=1

xi1yi

...
n∑

i=1

xikyi




.

As can be seen, the diagonal elements of X′X are the sum of squares of the elements
in X.

The fitted regression model is
ŷ = Xβ̂, (10.6)

and the (n × 1) vector of residuals, which reflects the difference between the actual
observation yi and the fitted value ŷi is denoted by

e = y − ŷ. (10.7)

To estimate σ2, we use the SS of the residuals, SSE =
∑n

i=1(yi−ŷi)
2 =

∑n
i=1 e

2
i = e′e.

After some re-expressions, we obtain the following error or residual sum of squares with
n− p degrees of freedom

SSE = y′y − β̂′X′y. (10.8)

It can be shown that E(SSE) = σ2(n − p), so that an unbiased estimator of σ2 is

σ̂2 =
SSE
n− p

. (10.9)

10.2.2 A simple multiple regression example

Let’s consider the measurement of the viscosity of a polymer and two process variables–
Temperature (◦C) and Catalyst feed rate (lb/h), that will be modeled as y = β0+β1x1+
β2x2 + ε.

visc <- read.table("viscosity.txt", header=TRUE)

lm.fit <- lm(Viscosity ~ Temperature+Catalyst, data=visc)

summary(lm.fit)

From the commands above, we see that the OLS fit is ŷ = 1566.08 + 7.62x1 + 8.58x2,
where x1 stands for the Temperature and x2 is the Catalyst feed rate.

Diagnostic or residual plots are useful to check that the residuals do not depend on
the fitted values ŷ. In R,
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op <- par(mfrow=c(2,2), las=1)

plot(lm.fit)

par(op)

would plot up to six diagnostic graphics; the four default ones are: (a) residuals against
fitted values, (b) Scale-Location, i.e.

√
|ẽi| against fitted values, (c) normal Q-Q plot,

and (d) residuals against leverage. Plots b–c use standardized residuals defined as
ei/(σ̂

√
1− hii), where hii are the diagonal elements of the “hat matrix” X(X′X)−1X′;

they are assumed to have constance variance. In figure 10.1, we plot two of them to
show how the variance of the observed viscosity tends to increase with increasing viscos-
ity magnitude.
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Figure 10.1: Normality probability plot of residuals (left) and plot of residuals
against predicted viscosity (right).

Looking at partial residual plots (plot(resid(lm.fit) ~ visc$Temperature)) further
suggests that viscosity variance increases with temperature (Fig. 10.2). Of note, more
elaborated partial residuals plots are available in the car package, e.g.

library(car)

crPlots(lm.fit)

10.2.3 Regression analysis of a 2
3 factorial design

In this designed experiment, we are interested in investigating the yield of a process.
The variables of interest are: temperature (x1), pressure (x2), and catalyst concentration
(x3). Each variable can be run at a low and a high level, yielding a 23 design with four
center points (Fig. 10.3); factor levels are coded as ±1.
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Figure 10.2: Plot of residuals vs. each predictor.

Let’s consider the following model, with main effects only:

y = β0 + β1x1 + β2x2 + β3x3 + ε.

It is easy to check that

X′X =




12 0 0 0
0 8 0 0
0 0 8 0
0 0 0 8


 X′y =




612
45
85
9




Now, using the lm() function,

yield2 <- read.table("yield2.txt", header=TRUE,

colClasses=c(rep("factor",3),"numeric"))

levels(yield2$Temp) <- c(-1,0,1)

levels(yield2$Pressure) <- c(-1,0,1)

levels(yield2$Conc) <- c(-1,0,1)

lm.fit <- lm(Yield ~ as.numeric(as.character(Temp))+

as.numeric(as.character(Pressure))+

as.numeric(as.character(Conc)), data=yield2)

summary(lm.fit)

the fitted regression model is

ŷ = 51.000 + 5.625x1 + 10.625x2 + 1.125x3.

Note that we need to convert the original scales into the recoded factor levels, and using
simply as.numeric() would not be sufficient as it would automatically convert factor
values into {1, 2, 3} (this won’t change anything except for the intercept term).
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Factor
Run x1 x2 x3

1 −1 −1 −1
2 +1 −1 −1
3 −1 +1 −1
4 +1 +1 −1
5 −1 −1 +1
6 +1 −1 +1
7 −1 +1 +1
8 +1 +1 +1
9 0 0 0
10 0 0 0
11 0 0 0
12 0 0 0

(a) Design matrix

46

36

57 68

57

65

48

32

50

44

53

56

(b) Geometric view

Figure 10.3: Experiment design for the chemical experiment.

To see the connection with the analysis of 23 design discussed in Chapter ??, let
compute the effect of temperature as the difference of means between high and low
levels, that is T = ȳT+ − ȳT− :

diff(with(subset(yield2, Temp != 0),

tapply(Yield, droplevels(Temp), mean)))

This is twice the regression coefficient for temperature. For every 2k design, the regres-
sion coefficient is always one-half the usual effect estimate. Moreover, this shows that
effect estimates from a 2k design are least squares estimates.

In the previous example, X′X was diagonal, so that its inverse was also diago-
nal. This means that the estimators of all regression coefficients are uncorrelated, or
Cov(β̂i, β̂j) = 0, ∀i 6= j. To deliberately achieve such a result, one must choose a de-
sign matrix where columns are orthogonal (i.e., linearly independent): This is called an
orthogonal design, as is the case for 2k factorial designs. Montgomery gives two exam-
ples of how regression analysis might be useful in the case of non-orthogonal designs,
either after removing one run from the preceding experiment or after introducing small
discrepancies in the precision of the factor levels.

10.2.4 Aliasing and fractional design

Another application of regression analysis in the spirit of the analysis of designed exper-
iments is the de-aliasing of interactions in a fractional factorial plan.
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10.3 Regression analysis: Hypothesis Testing and Confi-

dence intervals

10.4 Prediction of new observations

10.5 Regression Model diagnostics
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Chapter 11

Response Surface Methods and
Designs
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Chapter 12

Robust Parameter Design and
Process Robustness Studies
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Chapter 13

Experiments with Random
Factors

strength <- read.table("strength.txt",header=TRUE)

strength$Looms <- factor(strength$Looms)

strength$Obs <- factor(strength$Obs)

library(nlme)

strength.lmm <- lme(y~as.factor(Looms),data=strength,random=~1)
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Chapter 14

Nested and Split-Plot Designs
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Chapter 15

Other Design and Analysis Topics
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Standard Normal and Student t distributions

Table 1: Standard Normal Distribution. Cumulative distribution function of the
N (0, 1).

x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

0.00
0.5000
0.5398
0.5793
0.6179
0.6554
0.6915
0.7257
0.7580
0.7881
0.8159
0.8413
0.8643
0.8849
0.9032
0.9192
0.9332
0.9452
0.9554
0.9641
0.9713
0.9772
0.9821
0.9861
0.9893
0.9918
0.9938
0.9953
0.9965
0.9974
0.9981
0.9987
0.9990
0.9993
0.9995
0.9997
0.9998
0.9998
0.9999
0.9999
1.0000

0.01
0.5040
0.5438
0.5832
0.6217
0.6591
0.6950
0.7291
0.7611
0.7910
0.8186
0.8438
0.8665
0.8869
0.9049
0.9207
0.9345
0.9463
0.9564
0.9649
0.9719
0.9778
0.9826
0.9864
0.9896
0.9920
0.9940
0.9955
0.9966
0.9975
0.9982
0.9987
0.9991
0.9993
0.9995
0.9997
0.9998
0.9998
0.9999
0.9999
1.0000

0.02
0.5080
0.5478
0.5871
0.6255
0.6628
0.6985
0.7324
0.7642
0.7939
0.8212
0.8461
0.8686
0.8888
0.9066
0.9222
0.9357
0.9474
0.9573
0.9656
0.9726
0.9783
0.9830
0.9868
0.9898
0.9922
0.9941
0.9956
0.9967
0.9976
0.9982
0.9987
0.9991
0.9994
0.9995
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.03
0.5120
0.5517
0.5910
0.6293
0.6664
0.7019
0.7357
0.7673
0.7967
0.8238
0.8485
0.8708
0.8907
0.9082
0.9236
0.9370
0.9484
0.9582
0.9664
0.9732
0.9788
0.9834
0.9871
0.9901
0.9925
0.9943
0.9957
0.9968
0.9977
0.9983
0.9988
0.9991
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.04
0.5160
0.5557
0.5948
0.6331
0.6700
0.7054
0.7389
0.7704
0.7995
0.8264
0.8508
0.8729
0.8925
0.9099
0.9251
0.9382
0.9495
0.9591
0.9671
0.9738
0.9793
0.9838
0.9875
0.9904
0.9927
0.9945
0.9959
0.9969
0.9977
0.9984
0.9988
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.05
0.5199
0.5596
0.5987
0.6368
0.6736
0.7088
0.7422
0.7734
0.8023
0.8289
0.8531
0.8749
0.8944
0.9115
0.9265
0.9394
0.9505
0.9599
0.9678
0.9744
0.9798
0.9842
0.9878
0.9906
0.9929
0.9946
0.9960
0.9970
0.9978
0.9984
0.9989
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.06
0.5239
0.5636
0.6026
0.6406
0.6772
0.7123
0.7454
0.7764
0.8051
0.8315
0.8554
0.8770
0.8962
0.9131
0.9279
0.9406
0.9515
0.9608
0.9686
0.9750
0.9803
0.9846
0.9881
0.9909
0.9931
0.9948
0.9961
0.9971
0.9979
0.9985
0.9989
0.9992
0.9994
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.07
0.5279
0.5675
0.6064
0.6443
0.6808
0.7157
0.7486
0.7794
0.8078
0.8340
0.8577
0.8790
0.8980
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.9756
0.9808
0.9850
0.9884
0.9911
0.9932
0.9949
0.9962
0.9972
0.9979
0.9985
0.9989
0.9992
0.9995
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.08
0.5319
0.5714
0.6103
0.6480
0.6844
0.7190
0.7517
0.7823
0.8106
0.8365
0.8599
0.8810
0.8997
0.9162
0.9306
0.9429
0.9535
0.9625
0.9699
0.9761
0.9812
0.9854
0.9887
0.9913
0.9934
0.9951
0.9963
0.9973
0.9980
0.9986
0.9990
0.9993
0.9995
0.9996
0.9997
0.9998
0.9999
0.9999
0.9999
1.0000

0.09
0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830
0.9015
0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
0.9993
0.9995
0.9997
0.9998
0.9998
0.9999
0.9999
0.9999
1.0000
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Table 2: Standard Normal Distribution. Quantiles u(β) of the order β from
N (0, 1).

β
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

0.000
0.0000
0.0251
0.0502
0.0753
0.1004
0.1257
0.1510
0.1764
0.2019
0.2275
0.2533
0.2793
0.3055
0.3319
0.3585
0.3853
0.4125
0.4399
0.4677
0.4959
0.5244
0.5534
0.5828
0.6128
0.6433
0.6745
0.7063
0.7388
0.7722
0.8064
0.8416
0.8779
0.9154
0.9542
0.9945
1.0364
1.0803
1.1264
1.1750
1.2265
1.2816
1.3408
1.4051
1.4758
1.5548
1.6449
1.7507
1.8808
2.0537
2.3263

0.001
0.0025
0.0276
0.0527
0.0778
0.1030
0.1282
0.1535
0.1789
0.2045
0.2301
0.2559
0.2819
0.3081
0.3345
0.3611
0.3880
0.4152
0.4427
0.4705
0.4987
0.5273
0.5563
0.5858
0.6158
0.6464
0.6776
0.7095
0.7421
0.7756
0.8099
0.8452
0.8816
0.9192
0.9581
0.9986
1.0407
1.0848
1.1311
1.1800
1.2319
1.2873
1.3469
1.4118
1.4833
1.5632
1.6546
1.7624
1.8957
2.0749
2.3656

0.002
0.0050
0.0301
0.0552
0.0803
0.1055
0.1307
0.1560
0.1815
0.2070
0.2327
0.2585
0.2845
0.3107
0.3372
0.3638
0.3907
0.4179
0.4454
0.4733
0.5015
0.5302
0.5592
0.5888
0.6189
0.6495
0.6808
0.7128
0.7454
0.7790
0.8134
0.8488
0.8853
0.9230
0.9621
1.0027
1.0450
1.0893
1.1359
1.1850
1.2372
1.2930
1.3532
1.4187
1.4909
1.5718
1.6646
1.7744
1.9110
2.0969
2.4089

0.003
0.0075
0.0326
0.0577
0.0828
0.1080
0.1332
0.1586
0.1840
0.2096
0.2353
0.2611
0.2871
0.3134
0.3398
0.3665
0.3934
0.4207
0.4482
0.4761
0.5044
0.5330
0.5622
0.5918
0.6219
0.6526
0.6840
0.7160
0.7488
0.7824
0.8169
0.8524
0.8890
0.9269
0.9661
1.0069
1.0494
1.0939
1.1407
1.1901
1.2426
1.2988
1.3595
1.4255
1.4985
1.5805
1.6747
1.7866
1.9268
2.1201
2.4573

0.004
0.0100
0.0351
0.0602
0.0853
0.1105
0.1358
0.1611
0.1866
0.2121
0.2378
0.2637
0.2898
0.3160
0.3425
0.3692
0.3961
0.4234
0.4510
0.4789
0.5072
0.5359
0.5651
0.5948
0.6250
0.6557
0.6871
0.7192
0.7521
0.7858
0.8204
0.8560
0.8927
0.9307
0.9701
1.0110
1.0537
1.0985
1.1455
1.1952
1.2481
1.3047
1.3658
1.4325
1.5063
1.5893
1.6849
1.7991
1.9431
2.1444
2.5121

0.005
0.0125
0.0376
0.0627
0.0878
0.1130
0.1383
0.1637
0.1891
0.2147
0.2404
0.2663
0.2924
0.3186
0.3451
0.3719
0.3989
0.4261
0.4538
0.4817
0.5101
0.5388
0.5681
0.5978
0.6280
0.6588
0.6903
0.7225
0.7554
0.7892
0.8239
0.8596
0.8965
0.9346
0.9741
1.0152
1.0581
1.1031
1.1503
1.2004
1.2536
1.3106
1.3722
1.4395
1.5141
1.5982
1.6954
1.8119
1.9600
2.1701
2.5758

0.006
0.0150
0.0401
0.0652
0.0904
0.1156
0.1408
0.1662
0.1917
0.2173
0.2430
0.2689
0.2950
0.3213
0.3478
0.3745
0.4016
0.4289
0.4565
0.4845
0.5129
0.5417
0.5710
0.6008
0.6311
0.6620
0.6935
0.7257
0.7588
0.7926
0.8274
0.8633
0.9002
0.9385
0.9782
1.0194
1.0625
1.1077
1.1552
1.2055
1.2591
1.3165
1.3787
1.4466
1.5220
1.6072
1.7060
1.8250
1.9774
2.1973
2.6521

0.007
0.0175
0.0426
0.0677
0.0929
0.1181
0.1434
0.1687
0.1942
0.2198
0.2456
0.2715
0.2976
0.3239
0.3505
0.3772
0.4043
0.4316
0.4593
0.4874
0.5158
0.5446
0.5740
0.6038
0.6341
0.6651
0.6967
0.7290
0.7621
0.7961
0.8310
0.8669
0.9040
0.9424
0.9822
1.0237
1.0669
1.1123
1.1601
1.2107
1.2646
1.3225
1.3852
1.4538
1.5301
1.6164
1.7169
1.8384
1.9954
2.2262
2.7478

0.008
0.0201
0.0451
0.0702
0.0954
0.1206
0.1459
0.1713
0.1968
0.2224
0.2482
0.2741
0.3002
0.3266
0.3531
0.3799
0.4070
0.4344
0.4621
0.4902
0.5187
0.5476
0.5769
0.6068
0.6372
0.6682
0.6999
0.7323
0.7655
0.7995
0.8345
0.8705
0.9078
0.9463
0.9863
1.0279
1.0714
1.1170
1.1650
1.2160
1.2702
1.3285
1.3917
1.4611
1.5382
1.6258
1.7279
1.8522
2.0141
2.2571
2.8782

0.009
0.0226
0.0476
0.0728
0.0979
0.1231
0.1484
0.1738
0.1993
0.2250
0.2508
0.2767
0.3029
0.3292
0.3558
0.3826
0.4097
0.4372
0.4649
0.4930
0.5215
0.5505
0.5799
0.6098
0.6403
0.6713
0.7031
0.7356
0.7688
0.8030
0.8381
0.8742
0.9116
0.9502
0.9904
1.0322
1.0758
1.1217
1.1700
1.2212
1.2759
1.3346
1.3984
1.4684
1.5464
1.6352
1.7392
1.8663
2.0335
2.2904
3.0902
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Table 3: Student distribution. Quantiles u(β) of the order β from T (ν).

βm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

0.60
0.325
0.289
0.277
0.271
0.267
0.265
0.263
0.262
0.261
0.260
0.260
0.259
0.259
0.258
0.258
0.258
0.257
0.257
0.257
0.257
0.257
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.256
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255
0.255

0.70
0.727
0.617
0.584
0.569
0.559
0.553
0.549
0.546
0.543
0.542
0.540
0.539
0.538
0.537
0.536
0.535
0.534
0.534
0.533
0.533
0.532
0.532
0.532
0.531
0.531
0.531
0.531
0.530
0.530
0.530
0.530
0.530
0.530
0.529
0.529
0.529
0.529
0.529
0.529
0.529
0.529
0.528
0.528
0.528
0.528
0.528
0.528
0.528
0.528
0.528

0.80
1.376
1.061
0.978
0.941
0.920
0.906
0.896
0.889
0.883
0.879
0.876
0.873
0.870
0.868
0.866
0.865
0.863
0.862
0.861
0.860
0.859
0.858
0.858
0.857
0.856
0.856
0.855
0.855
0.854
0.854
0.853
0.853
0.853
0.852
0.852
0.852
0.851
0.851
0.851
0.851
0.850
0.850
0.850
0.850
0.850
0.850
0.849
0.849
0.849
0.849

0.90
3.078
1.886
1.638
1.533
1.476
1.440
1.415
1.397
1.383
1.372
1.363
1.356
1.350
1.345
1.341
1.337
1.333
1.330
1.328
1.325
1.323
1.321
1.319
1.318
1.316
1.315
1.314
1.313
1.311
1.310
1.309
1.309
1.308
1.307
1.306
1.306
1.305
1.304
1.304
1.303
1.303
1.302
1.302
1.301
1.301
1.300
1.300
1.299
1.299
1.299

0.95
6.314
2.920
2.353
2.132
2.015
1.943
1.895
1.860
1.833
1.812
1.796
1.782
1.771
1.761
1.753
1.746
1.740
1.734
1.729
1.725
1.721
1.717
1.714
1.711
1.708
1.706
1.703
1.701
1.699
1.697
1.696
1.694
1.692
1.691
1.690
1.688
1.687
1.686
1.685
1.684
1.683
1.682
1.681
1.680
1.679
1.679
1.678
1.677
1.677
1.676

0.9750
12.706
4.303
3.182
2.776
2.571
2.447
2.365
2.306
2.262
2.228
2.201
2.179
2.160
2.145
2.131
2.120
2.110
2.101
2.093
2.086
2.080
2.074
2.069
2.064
2.060
2.056
2.052
2.048
2.045
2.042
2.040
2.037
2.035
2.032
2.030
2.028
2.026
2.024
2.023
2.021
2.020
2.018
2.017
2.015
2.014
2.013
2.012
2.011
2.010
2.009

0.9900
31.821
6.965
4.541
3.747
3.365
3.143
2.998
2.896
2.821
2.764
2.718
2.681
2.650
2.624
2.602
2.583
2.567
2.552
2.539
2.528
2.518
2.508
2.500
2.492
2.485
2.479
2.473
2.467
2.462
2.457
2.453
2.449
2.445
2.441
2.438
2.434
2.431
2.429
2.426
2.423
2.421
2.418
2.416
2.414
2.412
2.410
2.408
2.407
2.405
2.403

0.9950
63.657
9.925
5.841
4.604
4.032
3.707
3.499
3.355
3.250
3.169
3.106
3.055
3.012
2.977
2.947
2.921
2.898
2.878
2.861
2.845
2.831
2.819
2.807
2.797
2.787
2.779
2.771
2.763
2.756
2.750
2.744
2.738
2.733
2.728
2.724
2.719
2.715
2.712
2.708
2.704
2.701
2.698
2.695
2.692
2.690
2.687
2.685
2.682
2.680
2.678

0.9990
318.309
22.327
10.215
7.173
5.893
5.208
4.785
4.501
4.297
4.144
4.025
3.930
3.852
3.787
3.733
3.686
3.646
3.610
3.579
3.552
3.527
3.505
3.485
3.467
3.450
3.435
3.421
3.408
3.396
3.385
3.375
3.365
3.356
3.348
3.340
3.333
3.326
3.319
3.313
3.307
3.301
3.296
3.291
3.286
3.281
3.277
3.273
3.269
3.265
3.261

0.9995
636.619
31.599
12.924
8.610
6.869
5.959
5.408
5.041
4.781
4.587
4.437
4.318
4.221
4.140
4.073
4.015
3.965
3.922
3.883
3.850
3.819
3.792
3.768
3.745
3.725
3.707
3.690
3.674
3.659
3.646
3.633
3.622
3.611
3.601
3.591
3.582
3.574
3.566
3.558
3.551
3.544
3.538
3.532
3.526
3.520
3.515
3.510
3.505
3.500
3.496
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