Why the Unix Philosophy still matters

markus shnalke <meillo@marmaos.de>

ABSTRACT

This paper explains the importance of the Unix Philogdph software design.
Today few software designers aravare of these concepts, and thus a lot of
modern software is more limited than necessary andesndkss use of
software leverage than possibleKnowing and following the guidelines of the
Unix Philosophy makes software moraluable.

1. Introduction

The Unix Philosophy is the essence of how the Unix operating system, espisitilylchest,
was designed.It is not a limited set ofixed rules, but a loose set of guidelinesich tell hav

to write software that suites Unix wellActually, the Unix Philosophy describes what is com-
mon in typical Unix softare. TheWikipedia has an accurate definiti{28]:

The Unix philosophyis a set ofcultural norms and philosophical approaches teeldping
software based on the experience of leadineeligers of the Unix operating system.

As thereis no single definition of the Unix Philosophseveral people hae stated their
view on what it comprisesBestknown are:

. Doug Mcllroy’s summary: “Write programs that do one thing and do it WW@ai]
. Mike Gancarzbook “The UNIX Philosoply” [8].
. Eric S. Raymond’s booKThe Art of UNIX Programming’[15].

These different views on the Unix Philosophywdanuch in common.Especially the main
concepts are similar in all of themMcllroy’s definition can surely be called the core of the
Unix Philosoply, but the fundamental idea behind it all is “small is beautiful’

The Unix Philosoph explains how to design good software for Unikany concepts
described here are based on Urgkilities. Otheroperating systems may not offer suelili-
ties, hence it may not be possible to desigftware for such systems according to the Unix
Philosophy.

The Unix Philosophy haan idea of what the process of softwareetigpment should
look like, but large parts of the philosophy are quite independent from a concretepdgent
process. Hwaever onewill soon recognize that somew#dopment processes work well with
the ideas of the Unix Philosophy and support them, while others are at cross-putgeses.
Beck’s books about Extreme Programming are valuable supplemental resources on this topic.

The question of how to actually write code amalv the code should look in detail, are
beyond the scopeof this paper Kernighan and P#&s book “The Practice of Program-
ming” [10] covers this topic. Its point of view corresponds to the one espoused in this.paper

This paper was prepared for th8dftware Analysis’seminarat Uniersity Ulm. Mentor was professor Franz Schweiggetiandedin
on 2010-04-16.You may retrige this document frorhttp://marmaro.de/docs

-2-

2. Importance of software design in general

Software design consists of planning how the internal structure and external interfaces of
software should look. It has nothing talo with visual appearancef we were to compare a
program to a car, then its color would not mattis design would be thear’s size, its shape,

the locations of doors, the passenger/space ratio,viikalde controls and instruments, and so
forth.

Why should software be designed at ali?is accepted as general knowledge, thaenea
bad plan is better than no plamNot designing software meanmsogramming without a plan.
This will surely lead to horrible results, being horrible to use and horrible to mairthiese
two aspects are the visible one®ften invisible though, aréhe wasted possibleaps. Good
software design can make these gaivailable.

A software’s design deals with qualitaé properties. Good design leads$o good quality
and quality is importantAny car may be able to @@ from pointA to point B, but it depends
on the qualitatie decisionanade in the design of the vehicle, whether it is a good choice for
passenger transport aot, whether it is a good choice for a rough mountain area, and whether
the ride will be fun.

Requirements for a piece of software areftdd: functionaland non-functional.

. Functional requirements directly define the saf®s functions. They are the reason
why software gets written.Someonehas a problem and needs a tool to solveBieing
able to solve theroblem is the main functional goaThis is the driving force behind all
programming dbrt. Functionalrequirements are easier to define andeidfy

. Non-functional requirementare calledquality requirements, too.The quality of softvare
shavs through the properties that amet directly related to the sofames basic func-
tions. Tools of bad quality often do sa@wvthe problems they were written for, but intro-
duce problems and difficulties for usage andettgpment later on.Qualitatve aspects
are often werlooked at first sight, and are often difficult to define clearly andetdy

Quality is hardly interesting when software gets built initially, but it &ddsgh impact on
usability and maintenance of the software latArshort-sighted person might see the process
of developing software as one maingpncerned with building something uBut, experience
shaws that building software thiérst time is only a small portion of theverall work irvolved.

Bug fixing, extending, rebuilding of parts — maintenancerkv— soon tak a large part of the
time spent on a software projecAnd of course, the time spent actually using the sarfw
These processes are highly influenced by the aodfsv quality Thus, quality must not be
neglected. Havever the problem with quality is that you hardly “stumbleed’ bad quality
during the first build, although this is the time when you should care about good quality most.

Software design has littléo do with the basic function of sofane — this requirement
will get satisfied ayway. Software design is more about quality aspec®ood design leads
to good quality, bad design tead quality The primary functions of software will be fatted
modestly by bad quality, but good quality canvide a lot of additional benefitsyen at
places one ner expected it.

The ISO/IEC 9126-1 standard, parf9], defines the quality model as consisting of:
. Functionality (suitability, accurayg, interoperability, security)
. Reliability (maturity fault tolerance, rec@rability)
. Usability (understandabilitylearnability, operability, attractness)
. Efficiency (time behsior, resource utilization)

-3-

. Maintainability (analyzability changeability, stability, testability)
. Portability (adaptability installability, co-existence, replaceability)

Good design caimmprove these properties in software; poorly designed software likelgrsuf
in these areas.

One further goalof software design is consistgnc Consisteng eases understanding,
using, and working on thingsConsistentinternal structure andonsistent external intextes
can be provided by good design.

Software should be well designed because good desigidsamany problems during its
lifetime. Also, because good design can offer much additiorzéh.g Indeed,much effort
should be spent on good design to make software nadtahle. TheUnix Philosophy pro-
vides a way to desigsoftware well. It offers guidelines to achie good quality and highain
for the effort spent.

3. The Unix Philosophy

The originsof the Unix Philosophy ha& already been introducedlhis chapter explains the
philosophy oriented on Gancarz [8], and shows concrete examples of its application.

3.1. Pipes
The following examples demonstrate how theix Philosophy is appliedKnowledge of using
the Unix shell is assumed.

Counting the number of files in the current directory:

Is |wc -l

The ls command lists all files in the current directory, one per line,waad-I counts the
number of lines.

Counting the number of files that do not contdioo’’ in their name:

Is |grep -vfoo |wc -l

Here, the list of files is filtered bgrep to remwe all lines that contaifoo’’. The rest
equals the previousxample.

Finding thefive largest entries in the current directory:
du -s* |sort -nr | sed 5q

du -s* returns the recungtly summed sizes of all files in the current directory — no matter
if they are rgular files or directories.sort -nr sorts the list numerically in verse order
(descending). Finallysed 5q quits after it has printed the fifth line.

The presented command lines are examples of what Unix people would usethe get
desired output. There are other ways to get theame output; it is the user’'s decision which
way to go.

The examples show that mamasks on a Unix system are accomplished by combining
seweral small programs.The connection between the programs is denotethbypipe operator
‘|!.

Pipes, and theirxtensive and easy use, are one of the great aeinents of the Unix
system. Pipesvere possible in earlier operating systeimg, newer before hee they been such
a central part of the conceptn the early seenties when Doug Mcligintroduced pipes into

-4 -

the Unix system, “it was this concept and notation for linkingess programgogether that
transformed Unix from a basic file-sharing system to an entirely new way of comp{&]ng.

Being able to specify pipelines in an easy wayhi@yever not enough by itself; it is
only one half. The other is the design of the programs tha¢ used in the pipelineThey
need interfaces that allow them to be used in tlag. w

3.2. Interface design

Unix is, first of all, simple — erything is afile. Files are sequencesf bytes, without an
special structure.Programsshould be filters, which read a streambgfes from standard input
(stdin) and write a stream of bytes to standard output (stdduthhe files are sequences of
bytes, and the progranae filters on byte streams, then there is exactly one data auerf
Hence it is possible to combine programs in any desiad w

Even a handful of small programs yields agkaset of combinations, and thus a large set
of different functions. This is leverage! Ifthe programs are orthogonal to each othehe
best case — then the set of different functions is greatest.

Programs can also V& a separate control interface in addition to their data iaerf
The control interface is often calldde “user interice’, because it is usually designed to be
used by humans.The Unix Philosophy discourages the assumption that the user will be
human. Interactie use of software is slow usé software, because the program waits for user
input mostof the time. Interactve software also requires the user to be in front of the com-
puter occupying his attention during usage.

Now, back to the ideaf combining seeral small programs to perform a more specific
function: If these single tools were afiteractve, how would the user control them® is not
only aproblem to control seeral programs at once if they run at the same time; it is &go v
inefficient to hae to control each program when yhare intended to act in concertence,
the Unix Philosophy discourages designing programs which demand imerase. The
behaior of programs should be defined atdnation. Thisis done by specifyingrguments to
the program call (command line switches®ancarzdiscusses this topic asvoid[ing] captive
user interhces’[8, page 88f].

Non-interactie use is also an advantage for testing duringldpment. €sting interac-
tive programs is much more complicated than testing non-intexamunterparts.

3.3. Thetoolchest appoach

A toolchest is a set of toolslnsteadof one big tool for all tasks, there are many srdls,
each for one taskDifficult tasks are solved by combiningveeal small, simple tools.

The Unix toolchests a set of small, (mostly) non-interaai programs that are filters on
byte streams.They are, to a large extent, unrelated in their functidtence,the Unix tool-
chest provides a large set of functions that can be accbgsenimbining the programs in the
desired vay.

The act of software delopment benefits from small toolchest programs, t@ériting
small programs is generally easier and less error-prone than watigpg programs.Hence,
writing a large set of smaffrograms is still easier and less error-prone than writing oge lar
program with all the functionality includedlf the small programs are combinabilken thg
offer even an gen larger set of functions than the single monolithic progratence,one gets
two advantages out of writing small, combinable prograrfkey are easier to write and the
offer a greater set of functions through combination.

-5-

There are also two main drawbacks of the toolchegroach. First, one simple, stand-
ardized interface has to be sufficierif. one feels the need for moréogic’’ than a stream of
bytes, then a different approach might fequired. Also, a design where a stream of bytes is
sufficient, might not be conegible. By becoming more dmiliar with the “Unix style of
thinking”, developers will more often and easifind simple designs where a stream of bytes
is a sufficient intedce.

The seconddrawback of the toolchest approach concerns the ugertmolchest is often
more difficult to use becauseift necessary to become familiar with each tool and be able to
choose andise the right one in anywgin situation. Additionally, one needs to know how to
combine the tools in a sensibleay The issue is similar to héng a sharp knife — it is a
powerful tool in the hand of amaster, but of no value in the hand of an unskilled person.
However learning single, small tools of a toolchest is often easier than learning a xomple
tool. Theuser will already hae a basic understanding of an as yet unknown tool if the tools
of a toolchest hae a common, consistent styléde will be able to transfer knowledge of one
tool to another

This second drawback can be remd to a large extent by adding wrappers around the
basic tools. Novice users do not need to learrvesal tools if a professional wraps complete
command linesinto a highedevel script. Note that the wrapper script still calls the small
tools; it is justlike a skin around themNo complexity is added this ay, but new programs
can be created out of existing one with very littimbf

A wrapper script for finding théive largest entries ithe current directory might look
like this:

#!/bin/sh
du -s* |sort -nr | sed 5q

The script itself igust a tat file that calls the commands that a professional user would type
in directly. It is probably beneficialo make the prograrfiexible in regard to the number of
entries it prints:

#!/bin/sh

num=5

[$# -eq 1] && num="$1"

du -sh* |sort -nr |sed "${num}q"

This script acts like the one before whealled without an argument, but the user can also
specify a numerical argument to define the number of lines to pOne can surelyimagine
even moreflexible versions; haever they will still rely on the eternal programs which actu-
ally do the vork.

3.4. A powerful shell

The Unix shell provides thability to combine small programs into large ondéxut a paverful

shell is a great feature in otheays, too; for instance, by being scriptablgontrol statements

are built into the shell and the functions are the nompnagrams of the systemAs the pro-
grams are already known, learning to programhian shell becomes easyJsing normal pro-
grams as functions ithe shell programming language is only possible because they are small
and combinable tools in a toolchest style.

The Unix shell encourages writing small scripts, by combining existing programs because
it is so easy tado. This is a great step wards automation.It is wonderful if the effort to
automate a task equals the effort to do the task a second time by Ihahis. holds,then the
user will be happy to automateesything he does more than once.

-6 -

Small programs that do one job well, standardirgerfaces between them, a mechanism
to combine parts to larger parts, aad easy way to automate tasks will inevitably produce
software leverage, achieving multiple times the benefit of the initieéstment.

The shell also encourages rapid prototypinglany well known programs started as
quickly hacked shelbkcripts, and turned intdréal” programslater written in C. Building a
prototypefirst is a way to &oid the biggest problems in applicatiornvelpment. Fredrooks
explains in “No Silver Bullet’ [4]:

The hardest single part of building a software system is deciding preciselytavhaitd.

No other partof the conceptual work is so difficult as establishing the detailed technical
requirements, [...]. No other part of the work saripples the resulting system if done
wrong. Noother part is more difficult to rectify later

Writing a prototype is a great method for becoming familiar with the requirements and to
run into real problems early [8, page 28 f.].

Prototyping is often seen as a first step uilding software. Thisis, of course, good.
However the Unix Philosophy has aadditional perspectie on prototyping: After having
built the prototype, one might noticdat the prototype is alreadyood enough Hence,no
reimplementation in a more sophisticated programming langomagiet be of need, at least for
the moment. Maybe later, it might be necessary to rewrite the software, but nat riBy
delaying further work, ondeeps thdlexibility to react on changing requirement&oftware
parts that are nowritten will not miss the requirementdMell known is Gordon Bell's classic
saying: ‘The cheapest, fastest, and most reliable components are those that areh't there.

3.5. Wobrse is better
The Unix Philosophy aims for the 90% solutiathers call it the'Worse is better’approach.
Experience from real life projects st

(1) It is almost impossibléo define the requirements completely and correctlyfitse
time. Henceone should not try to; one will fail gway.

(2) Requirements change during timelenceit is best to delayequirement-based design
decisions as long as possibl&oftware shouldbe small andlexible as long as possible in
order to react to changing requirementShell scripts, for example, are more easily adjusted
than C programs.

(3) Maintenance work is hardork. Hence,one should keep the amount of code as
small as possible; it should only fulfill theurrent requirements. Softare parts that will be
written in the future do not need maintenance until that time.

See Brooks The Mythical Man-Month’ for reference [5, page 118]f
Starting with a prototype in a scripting language hasrs¢ adantages:
. As the initial effort is lav, one will likely start right way.
. Real requirements can be identified quickly since working partsvaiatde sooner

. When software is usable and valuable, it gets used, andtabtexl. This ensures that
problems will be found in the early stages o¥elepment.

. The prototype might be enough for the moment; thus, further work cdelaged until a
time when one knows about the requirements and problems more thoroughly

. Implementing only the parts that are actually needed atnibraent introduces less pro-
gramming and maintenanceor.

. If the situation changes such that the software is not needed anymore, therfodss ef
was spent on the project than it wouldrédneen if a different approach had beeremak

3.6. Upgrowth and survival of software

So far, writing or building software has been discussedlthough “writing’’ and “building”

are just verbs, tlyedo imply a specific view on the work process they describdaetter erb
would be to“‘grow” . Creatingsoftware in thesense of the Unix Philosophy is an incremental
process. ltstarts with aninitial prototype, which eolves as requirements changA. quickly
hacled shell script might become a large, sophisticated, compiled programatpisitw life-
time begins with the initial prototype and ensleen the software is not usedyarore. While
alive, it will be extended, rearranged, udb Growing software matcheghe view that
“software is neer finished. It is only releaséd[8, page 26]

Software can be seen as being controlled \nylutionary processesSuccessfukoftware
is software that is used by many for a long timéhis implies that the software is necessary
useful, and better than the altermaesi. Darwindescribes “the surval of thefittest.” [7] In
relation to software, the most successful software is the fittest; the one thatesuryThis
may be at the lel of one creature, or at thevéd of one species.)The fithess of software is
affected mainly by four propertiesportability of code,portability of data, range of usability
and reusability of parts.

(1) “Portability of code’” means using highel programminganguages, sticking to the
standard [10, chapt8f, and &oiding optimizations that introduce dependencies on specific
hardware. Hardwre has a much shorter lifespan than saféw By chaining software to
specific hardware, its lifetime is limited to that this hardvare. Incontrast, software should
be easy to port — adaptation is they ko success.

(2) “Portability of data’ is best achied by aoiding binary representations to store
data, since binary representations differ from machine to machiedual representation is
favored. Historically ASCIl was the character set of choice; for the futWer-8 might be the
better vay forward. Importantis that it is a plain text representation in a very common- char
acter set encodingApart from being able to transfetata between machines, readable data has
the great advantage that humans are able to directly read and edit iéxvigditors and other
tools from the Unix toolchest [8, page 5§.f

(3) A large “range of usability’ ensures good adaptation, and thus good &lrvilt is a
special distinctionwhen software becomes used in fields of ewdleahe original authors
newer imagined. Software thatsolves problems in a general way will likely be used foryman
kinds of similar problems.Being too specific limits the range aisability Requirements
change through time, thus use cases change&eor vanish. Asa goodexample of this point,
Allman identifiesflexibility to be one major reason for sendmail’s sucdéks

Second, | limited myself to theouting function [...]. This was a departure from the dom-
inant thought of the time, [...].

Third, the sendmail configuration file a8 flexible enough to adapt to a rapidly changing
world [...].

Successful software adapts itself to the changiagdw

(4) “Reusability of parts’ goes onestep further Softnare may become obsolete and
completely lose its field of action, but tleenstituent parts of the software may be general and
independent enough to swweithis death.If software is built by combining smahdependent
programs, then these parts are readilgilable for reuse.Who cares that the large progrdam
a failure, if parts of it become successful instead?

3.7. Summary

This chapter explained ideas central to the Unix Philogoplor each of the ideas, the aaw
tages they introduce weremained. TheUnix Philosophy isa set of guidelines that help in
the design of more valuable soétve. Fromthe viewpoint ofa software deesloper or softwre
designerthe Unix Philosophy provides answers to many software design problems.

The various ideas comprisinge Unix Philosophy are very interwea and can hardly
be applied independentlyThe most important messages ar& eep it simple!, “Do one
thing well!” , and“Use software leerage!”

4. Casestudy: MH

The previous chapter introduceshd explained the Unix Philosophy from a general point of
view. The driving force was that of the guidelines; references to existing softwaregivere
only sparsely In this and the next chaptezoncrete software will be the driving force in the
discussion.

This first case study is about the mail user agémisA) MH (“mail handler”) and its
descendanhmh (“new mail handler) [13]. MUAs provide functions to read, compose, and
organize mail, but (ideally) not to transfer itn this document, the naméH will be used to
include nmh. A distinction will only be made if differences betweemH and nmh are
described.

4.1. Historical background

Electronic mail was \ailable in Unixfrom a very early stageThe first MUA on Unix was
mail , which was already present in the First Edition [17, page 41tfjvas a small program
that either printed the user's mailbox file or appended text to someone else’s nidibox
depending on the command linggamentg18]. It was a program that did one job wellhis
job was emailing, which was very simple then.

Later, emailing became more powerful, and thus more compl€he simple mail ,
which knew nothing of subjects, independent handling of single messageing-term email
storage, was not powerful enoughyamore. In 1978 at Berkley Kurt Shoens wrotéMalil
(with a capital ‘M") to provide additional functions for emailing4ail was still one program,
but was large and did @eral jobs. Its user interface was modeled aftet Edis designed for
humans, but is still scriptablemailx is the adaptatiorof Berkeley Mail for SystemV [16].
Elm, pine, mutt, and a slew of graphiddaUAs followed Mail's direction: large, monolithic
programs which included all emailing functions.

A different way was taken by the people RAND Corporation. Initially they also had
used a monolithic mail system callets (for “mail system’). But in 1977, Stockton Gaines
and Norman Shapiro came up with a propdsal a hew email system concept — one that
honored the Unix Philosogh The concept was implemented by BruBerden in 1978 and
1979. Thiswas the birth oMH — the “mail handler’

Since thenRAND, the Unversity of California at Irvine and at Bezley, and seeral oth-
ers hae contributed to the sofawe. Havever it's core concepts remained the sania.the
late 90s, when delopment ofVH sloved down, Richard Coleman started witmh the nev
mail handler His goal was to impnee MH especially in rgard to the requirements of modern
emailing. ©day nmh is deeloped by various people on the Interfiet, 22].

4.2. Contraststo monolithic mail systems

All MUAs are monolithic, xceptMH. Although somevery little known toolchesMUAS might
also exist, this statement reflects the situation pretty well.

Monolithic MUAs gather all their functions in one prograrm contrast,MH is a tool-
chest of many small tools — one for each. jdillowing is a list ofimportant programs of
MH’s toolchest and their functiont gives an indication of what the toolchest looke lik

. inc : incorporatenew mail (this is how mail enters the system)
. scan : list messages in folder

. show: shav message

. next /prev : shav next/previous message

. folder : changecurrent folder

. refile : refile message into different folder

. rmm remo/e message

. comp: composenew message

. repl : replyto message

. forw : forward message

. send: sendprepared message (this is how mailvésathe system)

MH has no special usenterface like monolithicMUAs hare. Theuser does not lga the
shell to runMH; instead he uses th@nous MH programs within the shell.Using a monol-
ithic program with acaptive user interface meanentering’ the program, using it, andexit-
ing” the program. Using toolchests lik MH means running programs, alone or in combination
with others, also from other toolchests, without leaving the shell.

4.3. Datastorage

MH’s mail storage consists of a hierarchy under umers MH directory (usually
$HOME/Mail), where mail folders are directories and mail messages ardiles within
them. Eachmail folder contains afile .mh_sequences which lists the public message
sequences of that folder, for instance, timseensequence for new messagddail messages
are tet files located in a mail folderThe files contain the messagas they were reogd,
and they are named by ascending numbers in each.folder

This mailbox format is called MH’" after the MUA. Alternatves aremboxand maildir.

In the mbox format, all messages are stored withinfi@e This was a goodsolution in the
early days, when messages were onlyva lfees of text deleted within a short period of time.
Today with single messages often includingresal meabytes of attachments, this isbad
solution. Anotherdisadvantage othe mbox format is that it is more difficult to write tools
that work on mailmessages, because it isvays necessary tirst find and extract the ralant
message irthe mboxfile. With the MH mailbox format, each message is a sepdilate Also,
the problem of concurrent access to one mailboxeduced to the problem of concurrent
access to one messagé€he maildir format is generally similar tthe MH format, but modified
towards guaranteed reliabilityThis involves some compiity, unfortunately

Working with MH’s toolchest on mailboxes is much like working with Uribolcheston
directory trees:scan is likels , show is like cat , folder is like cd andpwd, refile is
like mv, andrmmis like rm.

-10 -

MH extends the context of processes in Unix by two more items for its tools:

. The current mail folder, which is similar to the current working directdgyr mail fold-
ers, folder provides the corresponding functionality od andpwd for directories.

. Sequences, which are named sets of messagasmail folder The current message,
relative to a mail folder, is a special sequendé.enables commands éknext and
prev .

In contrast to the general process context in Unix, which is maintdipetie lernel, MH’s
context must be maintained by the tools themeslv Usuallythere isone context per user
which resides in higontext file in the MH directory but a user can ka seeral contats,
too. Public sequences are an exception, ag/ thelong to a mail folder, and reside in the
.mh_sequences file there[12].

4.4. Discussiomof the design

This section discusse®lH in regard to the tenets of the Unix Philosophy that Gancarz
identified.

Small is beautiful anddo one thing wellare two design goaldhat are directly visible in
MH. Gancarzactually useMH in his book as example unddre headline‘Making UNIX Do
One ThingWell” [8, page 125ff]:

[MH] consists of a series of programs which when combined tfie user arenormous
ability to manipulate electronic mail messages. complex application, it shows that not
only is it possible to build large applications fraemaller components, but also that such
designs are actually preferable.

The various programs ofiH were relatvely easy to write, because each one was small, lim-
ited to one function, and had clear boundari€sr the same reasons, they are also easy to
maintain. Furthemore, the system cagasily get etended: Oneonly needs to place awe
program into the toolchestThis was done whemMIME support was added (e.ghbuild).
Also, different programs can exist to do basically saee job in different ways (e.g. in nmh:
show andmhshow)).

If someone needs a mail system with some additional functionality that iavait@ble
arywhere yet, it is beneficial texpand a toolchest systemdikH. Therehe can add ne
functionality by simplyadding additional programs to the toolchest; he does not risk to break
existing functionality by doing so.

Store data in flat text files; this principle was follwed by MH. Thisis not surprising,
because email messages are already plain tdH stores the messages as it reegithem,
thus any other tool that works ®FC2822 compliant mail messages aaperate on the mes-
sages in amMH mailbox. All otherfiles MH uses are plain text as wellt is therefore possi-
ble and encouraged to use the text processing tfoldnix’ toolchestto extend MH’s tool-
chest.

Avoid captive user interfaces MH is perfectly suited fomon-interactie use. It offers
all functions directly, without capte user intedces. Ifusers want ayraphical user inteate,
they can hae it with xmh exmh or with the Emacs inteate mh-e Theseare frontends for
the MH toolchest. Thismeans all email-relatedosk is still done byMH tools, but the fron-
tend calls the appropriate commands when the user clicks on buttons or pushes a k

Providing additional useinterfaces in form of frontends is a good approach, because it
does not limit the power of the backend itselthe frontend will only be able to maka sub-
set of the badnds power andlexibility available to the user, but if it is a separate program,
then the missing partsan still be accessed at the backend diredfiyit is integrated, then this

-11 -

will be much more difficult. An additionaladvantage is the ability to V& different frontends
to the same baekd.

Choose portability over efficiency and use shell scripts toincrease leerage and por
tability . Thesetwo tenets aréndirectly, but nicely, demonstrated by Bolsky and Korn in their
book about the Korn ShdlB]. Chapterl8 of the book shows a basic implementatdra sub-
set of MH in ksh scripts. This is just a demonstration, but a brilliant ondt shows hw
quickly one can implement such a prototywéh shell scripts, and how readable they are.
The implementation in scripting language mayt be very fast, but it can be fast enough, and
this is all that mattersBy having the code in an interpreted language, like the shell, portabil-
ity becomes a minor issue if we assume the interpreter to be widespread.

This demonstration also shows how easy it is to create single programs of toolchest
software. Eighttools (two of them having multiple names) and fliictions with supporting
code are presented to the read@he tools comprise less than 40 lines kdh each, in total
about 200 lines. The functions comprise less than 80 lines of ksh each, in total about 450
lines. Suchsmall software is easy to write, ea®yunderstand, and thus easy to maintain.
toolchest improes one’s ability to only write some parts of a program while still creating a
working result. Expandingthe toolchest,wen without global changes, will likely be possible.

Use software legerage to your adwantage and the lesser tenetlow the user to tailor
the ervironment are ideally followed in the design ofiH. Tailoring the environment is
heaiily encouraged by the ability to directly define default options to prograiings even
possible to definalifferent default options depending on the name under which a program is
called. Softvare laverage is heavily encouraged by the ease of creating shell scripts that run a
specific command line, built of weral MH programs. Therare few pieces of software that
encourages users to tailor their environment andvierdge the use of the softwareelidH.

Just to cite onexample: Onemight prefer a different listing formdor the scan pro-
gram. lItis possible to take one of the distributed forrfilas or to write one yourselfTo use
the format as default fagcan , a single line, reading

scan: -form FORMATFILE

must be added tanh_profile . If one wants this alternaé format &ailable as an addi-
tional command, instead of changitige default, he just needs to create a linlsd¢an , for
instance titledscan2 . The line in .mh_profile would then start with scan2 , as the
option should only be in effect for a program that ioked asscan2 .

Make every program a filter is hard to find implemented iMH. The reason is that
most of MH's tools provide basic file system operations for ma#ioxItis for the same rea-
son because thdd , cp, mv, andrm aren'tfilters neither MH does notprovide maw filters
itself, but it provides a basis upon which to witiéers. An example wuld be a mail tet
highlighter a program that makes use of a color terminal to display héiadsr quotations,
and signatures in distinct colord.he author’s version of such a program is an awk script with
25 lines.

Build a prototype as soonas possiblewas again well followed byH. This tenet, of
course, focuses oearly deelopment, which is a long time ago fiH. But without follow-
ing this guideline at the very beginning, Bruce Borden maye hreot cominced the manage-
ment ofRAND to ever createMH. In Bruce’own words [22, page 132]:

[...] but [Stockton Gaines and Norm Shapiro] were not able to convince anyone that such a
system would be fast enough to be usableproposed avery short project to pre the
basic concepts, and my management agrdeambking back, | realize that | had beerry
lucky with my first design. Without nearly enough desigmwork, | built a working

-12 -

ervironment and some headéles with key structures and wrote the firstwfeMH com-
mands: inc,shav/next/prey and comp.[...] With these three, | was able to convince peo-
ple that the structure was viabl&his took about three weeks.

4. 5. Problems

MH is not without itsproblems. Thereare two main problems: one is technical, the other per
tains to human bekisr.

MH is old and email today is quitdifferent than it was in the time wheviH was
designed. MH adapted to the changes fairly well, but it has its limitatioM$VE support and
support for different character encodings available, but only on a moderatevéd. This
comes from limited deelopment resourcesA larger and moreactve developer base could
quickly remedy this. But MH is also limited bydesign, which is the larger probleniMAP,
for example, conflicts wittMH’s design to a largexeent. Theseadesign conflicts are naasily
solvable andmay require a redesigniMAP may be too incompatible with the classic mail
model, whichMH cowers, soMH may ne&er support it well. (Using IMAP and afilesystem
abstraction layer to onlynap a remote directory into the local filesystem, is a different topic.
IMAP support is seen as being able to access the special mail features of the protocol.)

The other kind of problem relata® human habits.In this world, where almost all
MUAs are monolithic, it is very difficult taonvince people to use a toolchest-stylgA like
MH. Thesehabits are so strong, thatem people who understand the concept ancradges
of MH are reluctant to switch, simply becauggl is different. Unfortunatelythe frontendgo
MH, which could provide familiar look and feel, are quite outdated andrnibugery appealing
in comparison to the modeilinterfaces of many monolithiMUAs. Onenotable exception is
mh-ewhich provides an Emacs interface &tH. Mh-e looks much lilke mutt or pine but it has
buttons, menus, and graphical display capabilities.

4.6. Summary

MH is an MUA that follows the Unix Philosophy in its designit consists of a toolchest of
small tools, eaclof which does one job wellThe toolchest approach offers grdbexibility to
the user It is possible to utilizehe complete power of the Unix shell withH. This males
MH a very powerful mail system, and extending and customidiigs easy and encouraged.

Apart from the user's perspedti, MH is development-friendly Its overall design follavs
clear rules. The single tools do only one jolthus they are easy to understand, write, and
maintain. Thg are all independent and do not interfere with the othArgomatedtesting of
their function is a straightforward task.

It is sad, thaMH’s dissimilarity to otheMUAS is its largest problem, as this dissimilarity
is also its largest adntage. Unfortunatelymost people’s habits are stronger than the attrac-
tion of the clear design and thewer MH offers.

5. Casestudy: uzbl

The last chapter focused on th&A MH, which is an old anestablished piece of sofare.
This chapter ceers uzbl,a fresh new projectUzbl is a web browser that adheres to the Unix
Philosophy Its name comes from theolspeakword for “usable’; both are pronounced in the
same \ay.

-13 -

5.1. Historical background

Uzbl was started bieter Plaetinck imlApril 2009. Theidea was born in a thread on thech
Linux forums[1]. After somediscussion about the failures of well-known web browsers, Plae-
tinck (alias Dieter@be) came up with a rough proposal of how a heé#lerbrowser could
look. In response to another member who asked if Plaetinokldvwrite this program
because it sounded fantastic, Plaetinck repligllaybe, if | find the time ;-J.

Fortunately he found thetime. One day later, the first prototype was ou©One week
later, uzbl had its own websif20]. Onemonth after the initial code was presentadnailing
list was set up to coordinate and discimsher deelopment, and a wiki was added to store
documentation and scripts that cropped up on the mailing list anghelse

In the first year ofuzbl’'s existence, it was heavily \ddoped on various branches.
Plaetincks task became more andore to only merge the best code from thefediint
branches into his maibranch, and to apply patchgd]. About once a month, Plaetinck
released a newevsion. In September 2009he presented sgeral forks of uzbl [20, nes
archiwe]. Uzbl actually opened the field faa whole family of web browsers with a similar
design.

In July 2009,Linux Weekly N&s published an interview with Plaetinck abaugbl [21].
In September 2009, the uzbl web browser waSlkshdo{19].

5.2. Contraststo other web browsers

Like mostMUASs are monolithic, it MH is a toolchest, most web browsers are monolithic, b
uzbl is a frontend to a toolchest.

Today uzbl is divided into uzbl-core and uzbl-tager Uzbl-coreis, asits name indi-
cates, the core of uzbllt handles commands andeats to interface witlother programs, and
displays webpages by usimgebkitas its rendering engineUzbl-bravser combines uzbl-core
with a selection of handler scripts, a status bar, @ent manager, yanking, pasting, page
searching, zooming, anthuch more functionality, to form acomplete’ web browser In the
following text, the term‘luzbl’” usually refers to uzbl-bneser so uzbl-core is included.

Unlike most other web browsers, uzbl is mainly the mediator betwadous tools that
cower single jobs. Uzbl listens for commands on a named pipe (fifo), a Wagket, and on
stdin, and it writes vents to aUnix socket and to stdoutLoading a webpage in a running
uzbl instance requires only:

echo 'uri http://fexample.org’ >/path/to/uzbl-fifo

The rendering of the webpage is done by libwebkit, around which uzbl-condtis b

Downloads, browsing history, bookmarks, and like are not provided by the core itself
like they are in other web hwsers. Uzbl-bravser alsoonly provides “handler scriptsivhich
wrap external applications to provide the actual functionalfgr instancewgetis used to
downloadfiles and uzbl-browser includes a script that calls wget with appropriate opti@ns
prepared erironment.

Modern web browsers are proud tovbaaddons, plugins, modules, and so forftis is
their effort to achiee similar goals. But instead of using existing external programs, modern
web browsers include these functions.

-14 -

5.3. Discussiorof the design

This section discusses uzbl irgaed to the Unix Philosoph as identified by Gancarz.

Make each program do one thing well Uzbl tries to be a web browser and nothing
else. Thecommondefinition of a web browser is highly influenced by existing implementa-
tions of web brarsers. Buta web browser should be a program tons® the web, and noth-
ing more. This is the one thing it should do.

Web browsers should not, for instance, manage downloadsisthii® job of denload
managers. Adownload manager is primary concerned withvidloading files. Modernweb
browvsers provide download management only as a secondary featone could they do this
job better than programs that exist only for this very jofa®d why would anyone want less
than the best download manageaiable?

A web bravsers job isto let the user browse the wellhis means, nagating through
websites by following links. Renderingthe HTML sources is a different job, tooln uzbl's
case, this is oered by the webkit rendering enginddandling audio and videocontent,
PostScript,PDF, and other such files are also not the job of a welwd®o Such content
should be handled by external programs that were written to handle suchUdalsstrives to
do it this vay.

Remember Doug Mcligs words: “Write programs that do one thing and do it well.
Write programs to work tgether’”

The lesser tenatllow the user to tailor the ervironment applies here as wellPrevi-
ously, the question,"WWhy would anyone want anything less thdre best program for the
job?” was put forvard. Butas personal preferenceastter, it might be more important to ask:
“Why would anyone want something other than his preferred program for the job?’

Users typically want one program for a specific. jodence,when&er one wishedo
download something, the same download manager should be Wdede advanced users
might want touse one download manager in a certain situation and another in a different situa-
tion; they should be able to configure it thisayw With uzbl, any download manager can be
used. D switch to a different ona single line in a small handler script needs to be changed.
Alternatively, it would be possible to query which download manager to use by readjiog a
bal file or an environment variable in the handler scrifif course, uzbl can use a fdifent
handler script as well.This simply requires a one line change in uzbl’s configurdiien

Uzbl neither has its own download manager depends on a specific one; hence, szbl’
browsing abilities will not be crippled by havinglad download manageUzbl's davnload
capabilities will be as good as the best download managdalsle on the systemOf course,
this applies to all of the other supplementary tools, too.

Use software lgerage to your adantage Uzbl is designed to be extended bytegnal
tools. Theseexternal tools are usualiywrapped by small handler shell scriptShell scripts
form the basis for the glue which holds the various parts together

The historymechanism of uzbl shall be presented asxamele. Uzblis configured to
spavn a script to append an entry to the history whkendhe gent of a fully loaded page
occurs. Thescript to append the entry to the history is not much more than:

#1/bin/sh
file=/path/to/uzbl-history
echo ‘date +'%Y-%m-%d %H:%M:%S"" $6 $7" >> $file

$6 and$7 expand to theJRL and the page title, respacily.

- 15 -

For loading an entry, aeg is bound to spsn a load-from-history script.The script rev-
erses the history to @ newer entriedirst, displaysdmenuto let the user select an item, and
then writes the selectddRL into uzbl's command input pipeWith error checking and corner
case handling remved, the script looks like this:

#/bin/sh

file=/path/to/uzbl-history

goto="tac $file | dmenu |cut -d'’ -f3
echo "uri $goto" > $4

$4 expands to the path of the command input pipe of the current uzbl instance.

Avoid captive user interfaces Onecould say that uzbl, to a large extent, actuaha
captive user intedce. Butthe difference from other web browsers is thzbl is only the cap-
tive user interface frontend (and the core of the dadk Maly parts of the backend are
independent of uzblFor some external programs, handler scripts are distributed with wgbl; b
arbitrary additional functionality canvahys be added if desired.

The frontend iscaptive — that is true. This is okay for the task of browsing the web, as
this task is only relant to humans.Automatedprograms wuld crawl the web, that means,
read the source directly, including akemantics. The graphical representation is just for
humans to understand the semantics more gyt

Make every program a filter. Graphicalweb browsers are almost dead ends in the
chain of informatiorflow. Thusit is difficult to seewhat graphical web browsers shofilter.
Graphical web browsers exist almogtlgsively to be interactiely used by humansThe only
case in whichone might want to automate the rendering function is to generate images of ren-
dered webpages.

Small is beautiful is not easy to apply to a wedlrowser because modern web technol-
ogy is very complex; hence, the rendering task is very complinfortunately modernweb
browvsers *have” to consist of many thousand lines of code, Uding toolchest approach and
wrappers can help to split the browser inteesal small parts, though.

As of March 2010, uzbl-core consists of about 3,500 lines of C cadtie.distribution
includes another 3,500 lines of Shell and Pytkode, which are the handler scripts and plu-
gins like one to provide a modal inteck. Furthemore, uzbl makes use of external tolite
wgetand socat Up to this point, uzbl looks pretty neat and smallhe ugly part ofuzbl is
the rendering engine, webkitWebkit consists ofroughly 400,000 (!) lines of codeUnfor-
tunately small rendering engines are refsible anymore due to the nature of the modern
web.

Build a prototype as soon as possihle Plaetinckmade his code publidght from the
beginning. Discussionand deelopment was, andtill is, open to eeryone interested, and
dewelopment versions of uzbl can be obtained very easily tl@rcode repositoryWithin the
first year of uzbl's existence, a newrsion was released more often than once a mobif.
ferent forks and branches arose introducing new features whichtlvegreconsidered for ngpr
ing into the main branch.The experiences with using prototypes influenced furitheelop-
ment. Actually all deselopment was community &gn. Plaetincksays, three months after
uzbl's birth: “Right now | hardly code anything myself for Uzbll just merge in other
peoples code, ponder a lot, and lead the discussiizis|.

- 16 -

5.4. Poblems

Similar to MH, uzbl suffers frombeing diferent. Itis sad, but people use what they Wno

Fortunately uzbl's user interface can be made to look and feel very similar to the dhe of
well known webbrowsers, hiding the internal flifences. Butizbl has to provide this similar
look and feel to be accepted asreormal” browser by ‘normal” users.

The more important problem here is thmdern web The modern web is simply bro-
ken. It has state im state-less protocol, misuses technologies, and is helplessipauled.
This results in rendering engines thahust” consist of hundreds of thousands of lines of
code. Thg also must combine and integrate manyedént technologies to make our modern
web accessible. This results, hwever in a failing attempt toprovide good usability
Website-to-image cwerters are almost impossible to run without hunmaeraction because of
state in sessions, impossible deep-linking, amhutomatablétechnologies.

The web was misused in order to attempt to fulfill all kirafswishes. Now web
browvsers, and ultimately users, suffer from it.

5.5. Summary

“Uzbl is a browser that adheres to the Unix PhilogOphs how uzbl is seen by its authors.
Indeed, uzbl follows the Unix Philosophy many vays. Itconsists of independent parts that
work together, while its core is mainly a mediator which glues the parts tagether

Software leverage is put to excellent usdxternaltools are used, independent tasks are
separated out to independent parts and glued together with small handler scripts.

Since uzbl roughly consists of a set of tools and a bijle¢, anyone can put the parts
together andexpand it in any desireday Flexibility and customization are properties that
make it valuable for advanced users, but magk novice users from understanding and using
it.

But uzbl's main problem is the modern web, which esalt very difficult to design a
sane web brgser Despitethis bad situation, uzbl does a fairly good.job

6. Final thoughts

This paper explained why good design is importaittintroduced the Unix Philosoghas a
set of guidelines thagéncourage good design in order to create good quality aaftwThen,
real world software that was designed with the Unix Philosophy in mind was discussed.

Throughout this paper, the aim was dglain why something should be done thiix
way. Reasonswvere given to substantiate the claim thie Unix Philosophy is a preferable
way of designing softere.

The Unix Philosophy is close to the softwarevel®pers point of viev. Its main goal is
taming the beast known &software complgity’’. Henceit strivesfirst and foremost for sim-
plicity of software. Itmight appear that usability for humans is a migoal, but actually, the
Unix Philosophy sees usability as a result of sound des&punddesign does not need to be
ultimately intuitve, but it will provide a consistent way to access the enormourpof
software leverage.

Being able to solr some specific concrete problem becomes less and less important as
there is software vailable for nearly wery possible task todayBut the quality of softwre
matters. Itis important that we lva good software.

-17 -

But why the Unix Philosophy?

The largest problem of softwarewedopment is the comptéy involved. Itis the only
part of the job thatomputers cannot takever. The Unix Philosoply fights complgity, as it
is the main enemy

On the other hand, thenost unique advantage of software is its ability teedage.
Current software still fails to make the best possible use ofattildy. The Unix Philosoply
concentrates on exploiting this great opportunity

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

-18 -

References

Arch Linux Forums, Thread ‘Arch Philosophy/Structer Appliedto a Biowser”, Spring 2009.
Online: http://bbs.archlinux.org/viewtopic.php?id=67463

Jason Aughenbaugldonathan Jessup, amNicholas Spicher, “Building UniX,in Unix: An Oral
History. Online: http://mww.princeton.edu/ hos/frs122/unixhist/finalhis.htm

Morris I. Bolsky and Deid G. Korn, The KornShell: command andggramming languge, p.
254-290, Prentice Hall, 1989SBN: 0-13-516972-0

Frederick P. Brooks, Jr., “No Silver Bullet: Essence @uwtidentsof Software Engineering,in
Information Processing 198@he Proceedings of the IFIFenth Vérld Computing Confence p.
1069-1076, Elsevier Science B.¥msterdam;The Netherlands, 1986.

Frederick P. Brooks, JrThe Mythical Man-Month: Essaysn Software Engineerind\nniversary
Edition, AddisonWesley Longman, Inc., 1995I1SBN: 0-201-83595-9

Bryan Costales and Erigllman, sendmail,p. xix, O'Reilly, 2003. ISBN: 1-56592-839-3

Charles Darwin,On the Origin of SpeciesJohn Murray, London, 1859. Available online:
http://fen.wikisource.org/wiki/On_the_Origin_of_Species_(1859)

Mike GancarzThe UNIX PhilosophyDigital Press, 1995.ISBN: 1-55558-123-4

ISO Standard 9126: Software Engineering — Product Quatityt 1, International Oganization
for Standardization, Gewe, 2001.

Brian W Kernighan and Rob RéThe Practice of Rigramming,Addison-Wesley 1999. ISBN:

0-201-61586-X

Michael S. Mahong The UNIX Oral History Roject, Bell Laboratories. Online:
http://www.princeton.edu/"hos/Mahoney/expotape.htm

MH/nmh workers, MH/nmh Documentatignpp. mh-profile(5), mh-sequence(5pistributed with
nmh-1.3. Online in possibly differentessions: http:/linux.die.net/man/5/mh-profile
http://linux.die.net/man/5/mh-sequence

Website of nmh Online: http:/nmh.nongnu.org

Jerry PeekMH & xmh: Email for Users & Rsgrammersp. AppendixB, O’'Reilly, 1995. Also
awailable online:http://rand-mh.sourceforge.net/book/

Eric S. RaymondThe Artof UNIX Pogramming,Addison-Wesley 2003. Also available online:
http://www.fags.org/docs/artu/

Gunnar Ritter mail, Mail, mailx, nail—history notes 2007-01-28. Online:
http://heirloom.sourceforge.net/mailx_history.html

Peter H. SalushA Quarter Century of UNIXAddison-Wesley1994. ISBN: 0-201-54777-5

Ken Thompsonand Dennis M.Ritchie, Unix Programmers Manual First Edition, p. mail(1),
1971-11-03. Online: http://cm.bell-labs.com/cm/cs/who/dmr/pdfs/man12.pdf

DigDuality (posted by timoty), Meet Uzbl- a Web Bowser Vith the Unix PhilosophySlashdot,
2009-09-05. Online: http://linux.slashdot.org/story/09/09/05/2142235

Website of uzbl Online: http://uzbl.org

Koen \érvloesem,Uzbl: a browser following the UNIX philosophbWN.net, 2009-07-15.0n-
line: http://lwn.net/Articles/341245/

Wllis H. Ware, RAND and the Information EvolutiorA History in Essays andfgnettes,p.
128-137, TheRAND Corporation, 2008. ISBN: 978-0-8330-4513-3.Also available online:
http://www.rand.org/pubs/corporate_pubs/CP537/

Wkipedia, TheFree Engclopedia,Unix philosophy Version of 2010-03-21 17:20 UTCOnline:
http://en.wikipedia.org/w/index.php?title=Unix_philosophy&oldid=351189719

-19 -

Table of Contents

I o 0T VT 1 o I PSSP EPPRSERR 1.
2. Importance of software design in general..........cccccvuuriiiiiiiiiiiiiiiiiiierereerreeree e ————— 2
3. The UNiX PhilOSOPY ..ot e e e e e e e e e e e e e e eane 3.
T I oL T PP TP PPPTPP PP 3...
3.2, INEIfACE UESIGM.. ... it e e 4.
3.3. Thetoolchest apProachl..........oooiiiiiiii e 4
3.4, APOWEITUI SNEIL... ... bbb e e e ae e eeeaeeeeeeeeeeeeees 5.
T T £ T Lo o= 1 =] (SRR PPPPPRRPR .
3.6. Upgrowth and sumva@l of SOftWArecooeviiiiiii i 7
BT SUMMAIY ..o 8..
4. CASE SIUAYIMH oottt e e e e s e et e e e e e s bbb r e e e e e e e a bbb r e e e e e e e ans 8..
4.1. Historical background..............oooooiii i 8
4.2. Contrasts to monolithic mail SYStEMS............uvviiiiiiiiiiiiiieiiieeeeeeeeeeee e 9
T 1=] (] = T [9.
4.4. Discussion Of the design........coooiiiiiii e 10
A5, ProBIEMS ... 12..
4.6, SUIMIMAIY....ci it 12..
T O 1Y I (1 [0)V 24 o PP 12..
5.1. Historical backgroUnd...........coooiiiiiiiiiiie e 13
5.2. Contrasts to other web Breers ... 13
5.3. DisScuSSION Of the deSIgN.......cciiiiiiiiiiiiiiiii e 14
5.4, PrODIEMS ... ——— 16..
B D SUMIMIAIY e e 16..
6. FiNal thOUQGNLS e 16..

R (] AT TR 18...

