
1 [4] Chapter 4. › jones-2004-introd-
bioin-algor

Z notes
January 26, 2022

Turnpike Reconstruction

The Turnpike reconstruction problem is to reconstruct a point set
from the distances. This finds applications in physics and molecular
biology (see the references for pointers to more specific information).
The name derives from the analogy of points to turnpike exits on
east-coast highways. Just as factoring seems harder than multiplica-
tion, the reconstruction problem seems harder than the construction
problem. Nobody has been able to give an algorithm which is guar-
anteed to work in polynomial time.1

Implementation in Julia, C++, and Python.

Galton-Watson process

The Galton-Watson process is part of branching processes. Let X be a
random variable (r.v.) with values in N, and for k ∈ N, pk = Pr(X =

k), and m = E(X) = ∑∞
k=0 kpk < ∞. Given (Xi,j)i,j∈N a family of r.v.

with law PX , we define the sequence (Zn)n∈N as follows:Z0 = 1

∀n ∈N, Zn+1 = ∑Zn
i=1 Xi,n

We also define πn := Pr(Zn = 0), and Pext := Pr(∃n ∈N, Zn = 0).
The above model allows to consider a set of particles (from the

same family) which are able to generate other particles. Each particle
has a probability pk of generating k independent particles, and this
probability is fixed across generations. The children of the $n$th gen-
eration belong to the n + 1th generation. The quantity Zn represents
the number of particles at generation n. Each particle i at generation
n has Xi,n children (1 ≤ i ≤ Zn), πn is the probability of extinction at
generation n, and Pext is the probability of extinction of the popula-
tion. If there exists n such that Zn = 0, then the population dies. In
other words, the hypotheses of this model are:

• If p0 = 0, then ∀n ∈N∗, Zn ≥ 1 a.s. and Pext = 0.

• If p0 = 1, then ∀n ∈N∗, Zn = 0 a.s. and Pext = 1.

Streams in Scheme

A nice analogy for streams, or infinite sequences, is the time-varying
behavior of a quantity x as a function of time x(t): If time is discrete,

http://nbviewer.ipython.org/gist/tungwaiyip/34b46ebaa4faa7bf5147
https://github.com/zhuli19901106/Data-Structures-and-Algorithm-Analysis-in-C/commit/196ce844ecd7aa095aefd67dfdfea8ea93602fd3
https://gist.github.com/marcoscastro/258e976bd2932624178c


z notes 2

2 [1] §3.5. › abelson-1996-struc-inter

3 SICP, Acknowledgments, Harold
Abelson and Gerald Jay Sussman with
Julie Sussman

4 Potential Biases in Estimating Absolute
and Relative Case-Fatality Risks during
Outbreaks, [5] › lipsitch-2015-poten-bi-
ases

5 [3] › harrell-2015-regres-model-strat

then a time function is nothing but a (possibly infinite) sequence –
the function itself doesn’t change over time. Streams can be imple-
mented as delayed lists.2

Streams are a clever idea that allows one to use sequence manipula-
tions without incurring the costs of manipulating sequences as lists.
With streams we can achieve the best of both worlds: We can formulate
programs elegantly as sequence manipulations, while attaining the
efficiency of incremental computation. The basic idea is to arrange to
construct a stream only partially, and to pass the partial construction to
the program that consumes the stream. If the consumer attempts to ac-
cess a part of the stream that has not yet been constructed, the stream
will automatically construct just enough more of itself to produce the
required part, thus preserving the illusion that the entire stream exists.

Programming languages for educational purpose

Marvin Minsky and Seymour Papert formed many of our attitudes
about programming and its place in our intellectual lives. To them
we owe the understanding that computation provides a means of
expression for exploring ideas that would otherwise be too complex
to deal with precisely. They emphasize that a student’s ability to write
and modify programs provides a powerful medium in which exploring
becomes a natural activity.3

Epidemiology and outbreak analysis

We describe two forms of bias that may affect the estimation of the
overall CFR—preferential ascertainment of severe cases and bias from
reporting delays—and review solutions that have been proposed and
implemented in past epidemics. Also of interest is the estimation of the
causal impact of specific interventions (e.g., hospitalization, or hospi-
talization at a particular hospital) on survival, which can be estimated
as a relative CFR for two or more groups. When observational data are
used for this purpose, three more sources of bias may arise: confound-
ing, survivorship bias, and selection due to preferential inclusion in
surveillance datasets of those who are hospitalized and/or die.4

On the use of splines for the Titanic dataset

A modern take on regression modeling using the beautiful rms
package. Fifteen years of use, and counting. Besides, the following
illustrates the use of rcs to account for possible non-linearities, in this
case regarding age of passengers.5

library(rms)

dd <- datadist(titanic3)

options(datadist = "dd")

https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003846
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003846
https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0003846
https://pubmed.ncbi.nlm.nih.gov/10366179/
https://pubmed.ncbi.nlm.nih.gov/10366179/


z notes 3

6 Stack Overflow

7 [6] › wasserman-2004-all-statis

f <- lrm(survived ~ rcs(sqrt(age), 5) * sex, data = titanic3)

print(f) # or latex(f)

## Wald statistics

a <- anova(f)

print(a)

plot(a)

## Odds-ratio & Co.

s <- summary(f, age = c(2, 21))

plot(s, log = TRUE)

## Effect table

print(s, dec = 2)

## Nomogram

plot(nomogram(f, fun = plogis, funlabel = "Prob(survived)"))

## Plotly

plotp(Predict(f, age, sex))

IEEE-754 and NA values

First off, floating-point numbers are not real numbers, and floating-
point arithmetic does not satisfy the axioms of real arithmetic. Tri-
chotomy is not the only property of real arithmetic that does not hold
for floats, nor even the most important. For example:6

• Addition is not associative.

• The distributive law does not hold.

• There are floating-point numbers without inverses.

I could go on. It is not possible to specify a fixed-size arithmetic type
that satisfies all of the properties of real arithmetic that we know and
love. The 754 committee has to decide to bend or break some of them.
This is guided by some pretty simple principles:

1. When we can, we match the behavior of real arithmetic.

2. When we can’t, we try to make the violations as predictable and as
easy to diagnose as possible.

Design and font size

Use different font sizes to create hierarchy. To create a scale of font
sizes, take the base font size (say 16) and mutliply it by a fixed ratio
to get more values:7

16 base = 16 4

16 * 8/9 = 14 3

14 * 8/9 = 12.5 2

12.5 * 8/9 = 11 1

https://stackoverflow.com/a/1573715


z notes 4

8 Why is division so much more complex
than other arithmetic operations?
9 [2] › efron-2020-predic-estim-attrib

This works in both direction:

16 / 8/9 = 18 5

18 / 8/9 = 20 6

Popular ratios: 15/16 (minor second), 8/9 (major second), ([1/
√

5]/2)
golden ratio, 5/6 (minor third), 4/5 (major third), 3/4 (perfect
fourth).

Confidence intervals and probability statements

Confidence intervals are not probability statements about θ.

Consider this example from Berger and Wolpert (1984). Let θ be a fixed,
known real number and let Xl , X2 be independent random variables
such that Pr(Xi = 1) = Pr(Xi = −1) = 1/2. Now define Yi = e + Xi,
and suppose that you only observe Yl and Y2.

Mean vs. median relative efficiency

Speaking of OLS and squared error, it is better to consider the mean
than the median since it is more than half again more efficient. In-
deed, it can be shown that:8, 9

E{(x̆− µ)2}/E{(x̄− µ)2} = 1.57.

The relative efficiency (RE) is defined as the variance of the first
estimator divided by that of the second estimator. Since the variance
of the sample mean is σ2/n, and that of the sample median πσ2/2n,
we have RE = (πσ2/2n)/(σ2/n) = π/2 = 1.57.

If, however, we are interested in prediction, the mean still wins but
only by 2%:

E{(X− x̆)2}/E{(X− x̄} = 1.02,

since most of the prediction error comes from the variability of X.
Division is an iterative algorithm (involving to shift the result from

quotient to remainder using a Euclidean measure) while addition can
be performed as a succession of bit manipulation tricks. It would be
interesting to check whether Newton-Raphson is still used internally
for reciprocating a number.

Slurping and barfing

Slurp and barf refers to part of structural editing whereby we pull
something into an s-expression, or conversely push out something
from the s-expression. These operations can be carried out in a

https://scicomp.stackexchange.com/q/187
https://scicomp.stackexchange.com/q/187
https://en.wikipedia.org/wiki/Division_algorithm


z notes 5

10 Riastradh on IRC #scheme (via
Matrix)

11 Taylor R Campbell, http://mumble.
net/~campbell/tmp/random_real.c

rightward or leftward manner. They are of course available in Emacs
under the paredit package. Vim-sexp provides similar functionalities
for Vi(m).10

(a b (c d) e)

(a (b c d) e) ;; slurp left

(a (b c) d e) ;; barf right

Scheme and equality testing

eq? compares object identity, which is inappropriate to compare
floats. Indeed, many Schemes will store floating-point values on the
heap, and represent them by a pointer into the storage. Two different
floating-point operations may result in different heap allocations,
but eq? may compare the pointers rather than the values they point
to. On the other hand, eqv? is used to distinguish numbers by their
exactness flag, while = is appropriate when we want to distinguish
numbers by their value only, irrespective of exactness flag. For in-
stance, (eq? +inf.0 (abs (exp 1000.0))) will return #f.

(define infinite?

(and (number? obj) (= +inf.0 (abs obj))))

Generating Uniform random floats

The naive approach of generating an integer in {0, 1, . . . , 2k − 1}
for some k and dividing by 2k, as used by, e.g., Boost.Random and
GCC 4.8’s implementation of C++11 uniformrealdistribution, gives a
nonuniform distribution:11

• If k is 64, a natural choice for the source of bits, then because the
set {0, 1, . . . , 253 − 1} is represented exactly, whereas many subsets
of {253, 253 + 1, . . . , 264 − 1} are rounded to common floating-point
numbers, outputs in [0, 2−11) are underrepresented.

• If k is 53, in an attempt to avoid nonuniformity due to rounding,
then numbers in (0, 2−53) and 1 will never be output. These out-
puts have very small, but nonnegligible, probability: the Bitcoin
network today randomly guesses solutions every ten minutes
to problems for which random guessing has much, much lower
probability of success, closer to 2−64.

See also: LLVM #18767 and LWG #2524.

https://matrix.to/#/!zkpjmpoWAKcjkiQMxo:matrix.org/\protect \T1\textdollar 1595918671364028nueUE:matrix.org?via=matrix.org
http://mumble.net/~campbell/tmp/random_real.c
http://mumble.net/~campbell/tmp/random_real.c
http://danmidwood.com/content/2014/11/21/animated-paredit.html
https://github.com/guns/vim-sexp
http://llvm.org/bugs/show_bug.cgi?id=18767
http://open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#2524


z notes 6

On BSD and MIT licenses

Actually there are four BSD licenses:

1. zero-clause BSD: Permission to use, copy, modify, and/or dis-
tribute this software for any purpose with or without fee is hereby
granted.

2. two-clause BSD:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer. Redistri-
butions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documen-
tation and/or other materials provided with the distribution.

3. three-clause BSD: two-clause BSD + Neither the name of the
[organization] nor the names of its contributors may be used to
endorse or promote products derived from this software without
specific prior written permission.

4. four-clause BSD: three-clause BSD + All advertising materials
mentioning features or use of this software must display the
following acknowledgement: This product includes software
developed by the [organization].

On the contrary, the MIT license does not include claure reagrding
advertisment like in the BSD 3 license, but it features an attribution
clause:

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Soft-
ware"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be in-
cluded in all copies or substantial portions of the Software.

The closest licenses are probably BSD 2 and MIT, although the
MIT license further allows to merge, publish, sublicense or even sell
existing work.



z notes 7

12 SRFI 179

13 https://qiime2.org

SRFI 179: Nonempty Intervals and Generalized Arrays

This SRFI extends Bawden-style arrays by adding storage-class object,
array currying and permuting, as well as an interval and a mapping
that has that interval as its domain, which allows for generalized and
specialized arrays.12

This approach differs from SRFI-164 where arrays are seen as
extension of generalized vectors (with additional support for Kawa
ranges).

The most peculiar thing to me about this discussion of arrays for
Scheme is the seemingly widespread notion that arrays should be
somehow identified with vectors that contain vectors. (One common
corollary of this belief seems to be that if you don’t have native arrays,
you -have- to use vectors of vectors – which is inefficient.)

Well, let me point out that the difference between a vector and an array
is really just some arithmetic performed on the indices. If I’m writing
a program that does a lot of manipulating of 4x4 matrices, I can do as
well as any native array implementation by using 16 element vectors,
and writing

(vector-ref M (+ (* 4 i) j))

instead of

(array-ref M i j)

If I write my loops so that, in fact, I process the elements of the matrix
in the order that they are layed out in the vector, then a good compiler
should be able to do just as well is it could if I used native arrays.

— Alan Bawden

QIIME-2 for microbiome analysis

Although it is oriented toward the analysis of microbiomes, it might
still be relevant for fungi metabarcoding. The workflow and associ-
ated tools are almost identical: demultiplexing, read pairs merging,
primer removal (cutadapt), sequence clustering (vsearch), OTU clus-
tering (apparently, it does rely on swarm), taxonoxmy assignment.
The last step is performed using either a reference database or an ML
classifier (scikit-learn, which apparently is a Naive Bayes classifier;
see Optimizing taxonomic classification of marker-gene amplicon
sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:
90 (2018)).13

See also the SILVA project (no fungi of interest, though).

References

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpre-
tation of Computer Programs. 2nd ed. MIT Press, 1996.

https://srfi.schemers.org/srfi-179/srfi-179.html
https://qiime2.org
https://srfi.schemers.org/srfi-164/srfi-164.html
https://www.gnu.org/software/kawa/Ranges.html
https://www.gnu.org/software/kawa/Ranges.html
https://groups.google.com/g/comp.lang.scheme/c/7nkx58Kv6RI/m/a5hdsduFL2wJ
https://github.com/torognes/swarm
https://docs.qiime2.org/2020.8/plugins/available/feature-classifier/classify-sklearn/
https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0470-z
https://www.arb-silva.de/


z notes 8

[2] Bradley Efron. “Prediction, Estimation, and Attribution”. In:
Journal of the American Statistical Association 115.530 (2020),
pp. 636–655.

[3] Frank E Harrell. Regression Modeling Strategies. 2nd ed. Springer
Series in Statistics. Cham: Springer International Publishing,
2015.

[4] Neil C. Jones and Pavel A. Pevzner. An Introduction to Bioinfor-
matics Algorithms. The MIT Press, 2004.

[5] Marc Lipsitch et al. “Potential Biases in Estimating Absolute
and Relative Case-Fatality Risks during Outbreaks”. In: PLOS
Neglected Tropical Diseases 9.7, e0003846 (2015), pp. 1–16.

[6] Larry Wasserman. All of Statistics. Springer, 2004.


